Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cytotherapy ; 26(4): 372-382, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363250

RESUMEN

BACKGROUND AIMS: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS: Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS: The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS: These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Osteogénesis , Regeneración Ósea , Proliferación Celular , Diferenciación Celular , Células Cultivadas
2.
Sci Adv ; 9(45): eadi2387, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948519

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-ß2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Factores Inmunológicos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
3.
J Dent Anesth Pain Med ; 23(4): 179-192, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37559666

RESUMEN

Obstructive sleep apnea (OSA) is a common sleep-breathing disorder associated with significant comorbidities and perioperative complications. This narrative review is aimed at comprehensively overviewing preoperative risk evaluation and perioperative management strategies for patients with OSA. OSA is characterized by recurrent episodes of upper airway obstruction during sleep leading to hypoxemia and arousal. Anatomical features, such as upper airway narrowing and obesity, contribute to the development of OSA. OSA can be diagnosed based on polysomnography findings, and positive airway pressure therapy is the mainstay of treatment. However, alternative therapies, such as oral appliances or upper airway surgery, can be considered for patients with intolerance. Patients with OSA face perioperative challenges due to difficult airway management, comorbidities, and effects of sedatives and analgesics. Anatomical changes, reduced upper airway muscle tone, and obesity increase the risks of airway obstruction, and difficulties in intubation and mask ventilation. OSA-related comorbidities, such as cardiovascular and respiratory disorders, further increase perioperative risks. Sedatives and opioids can exacerbate respiratory depression and compromise airway patency. Therefore, careful consideration of alternative pain management options is necessary. Although the association between OSA and postoperative mortality remains controversial, concerns exist regarding adverse outcomes in patients with OSA. Understanding the pathophysiology of OSA, implementing appropriate preoperative evaluations, and tailoring perioperative management strategies are vital to ensure patient safety and optimize surgical outcomes.

4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982329

RESUMEN

Extracellular vesicles (EVs) from allogeneic-tissue-derived mesenchymal stem cells (MSCs) are promising to improve Sjögren's syndrome (SS) treatment, but their application is hindered by high variations in and limited expandability of tissue MSCs. We derived standardized and scalable MSCs from iPS cells (iMSCs) and reported that EVs from young but not aging iMSCs (iEVs) inhibited sialadenitis onset in SS mouse models. Here, we aim to determine cellular mechanisms and optimization approaches of SS-inhibitory effects of iEVs. In NOD.B10.H2b mice at the pre-disease stage of SS, we examined the biodistribution and recipient cells of iEVs with imaging, flow cytometry, and qRT-PCR. Intravenously infused iEVs accumulated in the spleen but not salivary glands or cervical lymph nodes and were mainly taken up by macrophages. In the spleen, young but not aging iEVs increased M2 macrophages, decreased Th17 cells, and changed expression of related immunomodulatory molecules. Loading miR-125b inhibitors into aging iEVs significantly improved their effects on repressing sialadenitis onset and regulating immunomodulatory splenocytes. These data indicated that young but not aging iEVs suppress SS onset by regulating immunomodulatory splenocytes, and inhibiting miR-125b in aging iEVs restores such effects, which is promising to maximize production of effective iEVs from highly expanded iMSCs for future clinical application.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , MicroARNs , Sialadenitis , Síndrome de Sjögren , Ratones , Animales , Síndrome de Sjögren/terapia , Síndrome de Sjögren/tratamiento farmacológico , Bazo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Distribución Tisular , Ratones Endogámicos NOD , Sialadenitis/terapia , Sialadenitis/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Modelos Animales de Enfermedad
5.
Stem Cells ; 40(9): 870-882, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35852488

RESUMEN

Allogeneic mesenchymal stem/stromal cells (MSCs) are frequently used in clinical trials due to their low expression of major histocompatibility complex (MHC) class I and lack of MHC class II. However, the levels of MHC classes I and II in MSCs are increased by inflammatory stimuli, raising concerns over potential adverse effects associated with allogeneic cell therapy. Also, it is unclear how the host immune response to MHC-mismatched MSCs affects the therapeutic efficacy of the cells. Herein, using strategies to manipulate MHC genes in human bone marrow-derived MSCs via the CRISPR-Cas9 system, plasmids, or siRNAs, we found that inhibition of MHC class I-not MHC class II-in MSCs lowered the survival rate of MSCs and their immunosuppressive potency in mice with experimental autoimmune uveoretinitis, specifically by increasing MSC vulnerability to natural killer (NK)-cell-mediated cytotoxicity. A subsequent survey of MSC batches derived from 6 human donors confirmed a significant correlation between MSC survival rate and susceptibility to NK cells with the potency of MSCs to increase MHC class I level upon stimulation. Our overall results demonstrate that MHC class I enables MSCs to evade NK-cell-mediated cytotoxicity and exert immunosuppressive activity.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Antígenos HLA , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/farmacología , Humanos , Células Asesinas Naturales , Ratones
6.
Mol Ther ; 28(7): 1628-1644, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380062

RESUMEN

Accumulating evidence indicates that mesenchymal stem/stromal cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory effects by delivering therapeutic RNAs and proteins; however, the molecular mechanism underlying the EV-mediated immunomodulation is not fully understood. In this study, we found that EVs from early-passage MSCs had better immunomodulatory potency than did EVs from late-passage MSCs in T cell receptor (TCR)- or Toll-like receptor 4 (TLR4)-stimulated splenocytes and in mice with ocular Sjögren's syndrome. Moreover, MSC-EVs were more effective when produced from 3D culture of the cells than from the conventional 2D culture. Comparative molecular profiling using proteomics and microRNA sequencing revealed the enriched factors in MSC-EVs that were functionally effective in immunomodulation. Among them, manipulation of transforming growth factor ß1 (TGF-ß1), pentraxin 3 (PTX3), let-7b-5p, or miR-21-5p levels in MSCs significantly affected the immunosuppressive effects of their EVs. Furthermore, there was a strong correlation between the expression levels of TGF-ß1, PTX3, let-7b-5p, or miR-21-5p in MSC-EVs and their suppressive function. Therefore, our comparative strategy identified TGF-ß1, PTX3, let-7b-5p, or miR-21-5p as key molecules mediating the therapeutic effects of MSC-EVs in autoimmune disease. These findings would help understand the molecular mechanism underlying EV-mediated immunomodulation and provide functional biomarkers of EVs for the development of robust EV-based therapies.


Asunto(s)
Proteína C-Reactiva/genética , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Componente Amiloide P Sérico/genética , Síndrome de Sjögren-Larsson/terapia , Factor de Crecimiento Transformador beta1/genética , Animales , Proteína C-Reactiva/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteómica , Pase Seriado , Componente Amiloide P Sérico/metabolismo , Síndrome de Sjögren-Larsson/genética , Síndrome de Sjögren-Larsson/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
7.
J Innate Immun ; 11(4): 316-329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30844806

RESUMEN

Influenza A virus (IAV) poses a constant worldwide threat to human health. Although conventional vaccines are available, their protective efficacy is type or strain specific, and their production is time-consuming. For the control of an influenza pandemic in particular, agents that are immediately effective against a wide range of virus variants should be developed. Although pretreatment of various Toll-like receptor (TLR) ligands have already been reported to be effective in the defense against subsequent IAV infection, the efficacy was limited to specific subtypes, and safety concerns were also raised. In this study, we investigated the protective effect of an attenuated bacterial outer membrane vesicle -harboring modified lipid A moiety of lipopolysaccharide (fmOMV) against IAV infection and the underlying mechanisms. Administration of fmOMV conferred significant protection against a lethal dose of pandemic H1N1, PR8, H5N2, and highly pathogenic H5N1 viruses; this broad antiviral activity was dependent on macrophages but independent of neutrophils. fmOMV induced recruitment and activation of macrophages and elicited type I IFNs. Intriguingly, fmOMV showed a more significant protective effect than other TLR ligands tested in previous reports, without exhibiting any adverse effect. These results show the potential of fmOMV as a prophylactic agent for the defense against influenza virus infection.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Lípido A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Vesículas Secretoras/inmunología , Animales , Escherichia coli/genética , Femenino , Humanos , Interferón Tipo I/metabolismo , Ligandos , Lípido A/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Receptores Toll-Like/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA