Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Psychiatry ; 26(7): 3093-3107, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33087855

RESUMEN

Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.


Asunto(s)
Alcoholismo , Citocinas/sangre , Neuronas GABAérgicas/fisiología , Factores Sexuales , Trastornos por Estrés Postraumático , Transmisión Sináptica , Consumo de Bebidas Alcohólicas , Amígdala del Cerebelo , Animales , Femenino , Masculino , Ratas , Ratas Wistar
2.
Brain Behav Immun ; 82: 188-202, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31437534

RESUMEN

Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.


Asunto(s)
Alcoholismo/metabolismo , Astrocitos/metabolismo , Núcleo Amigdalino Central/metabolismo , Interleucina-6/biosíntesis , Síndrome de Abstinencia a Sustancias/metabolismo , Transmisión Sináptica/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Depresión/metabolismo , Trastorno Depresivo/metabolismo , Femenino , Neuronas GABAérgicas/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-24926240

RESUMEN

The central amygdala (CeA) plays an important role in opioid addiction. Therefore, we examined the effects of naloxone-precipitated morphine withdrawal (WD) on GABAergic transmission in rat CeA neurons using whole-cell recordings with naloxone in the bath. The basal frequency of miniature inhibitory postsynaptic currents (mIPSCs) increased in CeA neurons from WD compared to placebo rats. Acute morphine (10 µ M) had mixed effects (≥20% change from baseline) on mIPSCs in placebo and WD rats. In most CeA neurons (64%) from placebo rats, morphine significantly decreased mIPSC frequency and amplitude. In 32% of placebo neurons, morphine significantly increased mIPSC amplitudes but had no effect on mIPSC frequency. In WD rats, acute morphine significantly increased mIPSC frequency but had no effect on mIPSC amplitude in 41% of CeA neurons. In 45% of cells, acute morphine significantly decreased mIPSC frequency and amplitude. Pre-treatment with the cyclic AMP inhibitor (R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium (RP), prevented acute morphine-induced potentiation of mIPSCs. Pre-treatment of slices with the Gi/o G-protein subunit inhibitor pertussis toxin (PTX) did not prevent the acute morphine-induced enhancement or inhibition of mIPSCs. PTX and RP decreased basal mIPSC frequencies and amplitudes only in WD rats. The results suggest that inhibition of GABAergic transmission in the CeA by acute morphine is mediated by PTX-insensitive mechanisms, although PTX-sensitive mechanisms cannot be ruled out for non-morphine responsive cells; by contrast, potentiation of GABAergic transmission is mediated by activated cAMP signaling that also mediates the increased basal GABAergic transmission in WD rats. Our data indicate that during the acute phase of WD, the CeA opioid and GABAergic systems undergo neuroadaptative changes conditioned by a previous chronic morphine exposure and dependence.

4.
Addict Biol ; 16(4): 551-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21182569

RESUMEN

We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats. Superfusion of the MOR antagonist CTOP (1 µM) increased the mean amplitude of eIPSPs in a majority of CeA neurons to the same degree in both naïve/sham and morphine-treated rats, suggesting a tonic activation of MORs in both conditions. Superfusion of DAMGO decreased eIPSP amplitudes and the frequency of mIPSCs equally in both naïve/sham and morphine-treated rats but decreased the amplitude of mIPSCs only in morphine treated rats, an apparent postsynaptic action. Our combined findings suggest the development of tolerance of the CeA GABAergic system to inhibitory effects of acute activation of MORs on presynaptic GABA release and possible alteration of MOR-dependent postsynaptic mechanisms that may represent important neuroadaptations of the GABAergic and MOR systems during chronic morphine treatment.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiología , Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Morfina/farmacología , Narcóticos/farmacología , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/fisiología , Receptores Opioides mu/agonistas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Tolerancia a Medicamentos , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/fisiología , Somatostatina/análogos & derivados , Somatostatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA