Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38766857

RESUMEN

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Asunto(s)
Adipocitos , Antígenos de Neoplasias , Neoplasias de la Mama , Anhidrasa Carbónica IX , Movimiento Celular , Neoplasias del Colon , Subunidad alfa del Factor 1 Inducible por Hipoxia , Leptina , Comunicación Paracrina , Humanos , Anhidrasa Carbónica IX/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Antígenos de Neoplasias/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Leptina/metabolismo , Línea Celular Tumoral , Animales , Obesidad/metabolismo , Medios de Cultivo Condicionados/farmacología , Microambiente Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones
2.
Peptides ; 167: 171047, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328068

RESUMEN

The number of diabetic patients is rising globally and concomitantly so do the diabetes associated complications. The gut secretes a variety of proteins to control blood glucose levels and/or food intake. As the drug class of GLP-1 agonists is based on a gut secreted peptide and the positive metabolic effects of bariatric surgery are at least partially mediated by gut peptides, we were interested in other gut secreted proteins which have yet to be explored. In this respect we identified the gut secreted protein FAM3D by analyzing sequencing data from L- and epithelial cells of VSG and sham operated as well as chow and HFD fed mice. FAM3D was overexpressed in diet induced obese mice via an adeno-associated virus (AAV), which resulted in a significant improvement of fasting blood glucose levels, glucose tolerance and insulin sensitivity. The liver lipid deposition was reduced, and the steatosis morphology was improved. Hyperinsulinemic clamps indicated that FAM3D is a global insulin sensitizer and increases glucose uptake into various tissues. In conclusion, the current study demonstrated that FAM3D controls blood glucose levels by acting as an insulin sensitizing protein and improves hepatic lipid deposition.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Ratones , Animales , Glucemia/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Hígado Graso/metabolismo , Péptidos/farmacología , Lípidos , Ratones Endogámicos C57BL , Glucosa/metabolismo , Dieta Alta en Grasa , Citocinas/metabolismo
3.
J Physiol Biochem ; 75(3): 351-365, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31197649

RESUMEN

There is a gap in the knowledge regarding regulation of local renin-angiotensin system (RAS) in skeletal muscle during development of obesity and insulin resistance in vivo. This study evaluates the obesity- and age-related changes in the expression of local RAS components. Since RAS affects skeletal muscle remodelling, we also evaluated the muscle fibre type composition, defined by myosin heavy chain (MyHC) mRNAs and protein content. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps of 3- and 8-month-old male obese Zucker rats and their lean controls. The enzymatic activity of aminopeptidase A (APA) was determined flourometrically. Activation of renin receptor (ReR)/promyelocytic leukaemia zinc finger (PLZF) negative feedback mechanism was observed in obesity. The expression of angiotensinogen and AT1 was downregulated by obesity, while neutral endopeptidase and AT2 expressions were upregulated in obese rats with aging. Skeletal muscle APA activity was decreased by obesity, which negatively correlated with the increased plasma APA activity and plasma cholesterol. The expression of angiotensin-converting enzyme (ACE) positively correlated with MyHC mRNAs characteristic for fast-twitch muscle fibres. The obesity- and age-related alterations in the expression of both classical and alternative RAS components suggest an onset of a new equilibrium between ACE/AngII/AT1 and ACE2/Ang1-7/Mas at lower level accompanied by increased renin/ReR/PLZF activation. Increased APA release from the skeletal muscle in obesity might contribute to increased plasma APA activity. There is a link between reduced ACE expression and altered muscle MyHC proportion in obesity and aging.


Asunto(s)
Envejecimiento/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Obesidad/metabolismo , Estado Prediabético/metabolismo , Sistema Renina-Angiotensina , Animales , Resistencia a la Insulina , Masculino , Ratas , Ratas Zucker
4.
Int J Mol Sci ; 18(8)2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28757582

RESUMEN

Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.


Asunto(s)
Acetilcisteína/análogos & derivados , Antihipertensivos/administración & dosificación , Captopril/administración & dosificación , Hipertensión/tratamiento farmacológico , Melatonina/administración & dosificación , Remodelación Ventricular/efectos de los fármacos , Acetilcisteína/efectos adversos , Animales , Antihipertensivos/farmacología , Captopril/farmacología , Modelos Animales de Enfermedad , Fibrosis , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Hipertensión/inducido químicamente , Hipertensión/etiología , Luz/efectos adversos , Masculino , Melatonina/farmacología , NG-Nitroarginina Metil Éster/efectos adversos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA