Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biomed Pharmacother ; 174: 116537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579402

RESUMEN

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Asunto(s)
Apoptosis , Linfocitos B , Inhibidores de Histona Desacetilasas , Leucemia Linfocítica Crónica de Células B , Factor de Transcripción STAT4 , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/metabolismo , Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Factor de Transcripción STAT4/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/antagonistas & inhibidores , Benzamidas/farmacología , Masculino , Anciano , Femenino , Persona de Mediana Edad
2.
Front Cell Dev Biol ; 12: 1297116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389706

RESUMEN

Introduction: Escape from immunosurveillance is a hallmark of chronic lymphocytic leukemia (CLL) cells. In the protective niche of lymphoid organs, leukemic cells suppress the ability of T lymphocytes to form the immune synapse (IS), thereby hampering T-cell mediated anti-tumoral activities. By binding its cognate receptor PD-1 at the surface of T lymphocytes, the inhibitory ligand PD-L1, which is overexpressed in CLL cells, mediates the T-cell suppressive activities of CLL cells. However, the molecular mechanism underlying PD-L1 overexpression in CLL cells remains unknown. We have previously reported a defective expression of the pro-apoptotic and pro-oxidant adaptor p66Shc in CLL cells, which is causally related to an impairment in intracellular reactive oxygen species (ROS) production and to the activation of the ROS-sensitive transcription factor NF-κB. The fact that PD-L1 expression is regulated by NF-κB suggests a mechanistic relationship between p66Shc deficiency and PD-L1 overexpression in CLL cells. Methods: 62 treatment-naive CLL patients and 43 healthy donors were included in this study. PD-L1 and p66Shc expression was quantified in B cells by flow cytometry and qRT-PCR. IS architecture and local signaling was assessed by flow cytometry and confocal microscopy. CD8+ cell killing activity was assessed by flow cytometry. Results: Here we show that residual p66Shc expression in leukemic cells isolated both from CLL patients and from the CLL mouse model Eµ-TCL1 inversely correlated with PD-L1 expression. We also show that the PD-L1 increase prevented leukemic cells from forming ISs with T lymphocytes. Reconstitution of p66Shc, but not of a ROS-defective mutant, in both CLL cells and the CLL-derived cell line MEC-1, enhanced intracellular ROS and decreased PD-L1 expression. Similar results were obtained following treatment of CLL cells with H2O2 as exogenous source of ROS, that normalized PD-L1 expression and recovered IS formation. Discussion: Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to enhance PD-L1 expression and provides a mechanistic basis for the suppression of T cell-mediated anti-tumoral functions in the immunosuppressive lymphoid niche.

3.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360867

RESUMEN

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Asunto(s)
Interleucina-9 , Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Ratones , Factores Inmunológicos , Interleucina-10/metabolismo , Interleucina-9/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral
4.
Cancer Immunol Immunother ; 73(1): 2, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175205

RESUMEN

BACKGROUND: The immunosuppressive tumor microenvironment (TME) of colorectal cancer (CRC) is a major hurdle for immune checkpoint inhibitor-based therapies. Hence characterization of the signaling pathways driving T cell exhaustion within TME is a critical need for the discovery of novel therapeutic targets and the development of effective therapies. We previously showed that (i) the adaptor protein Rai is a negative regulator of T cell receptor signaling and T helper 1 (Th1)/Th17 cell differentiation; and (ii) Rai deficiency is implicated in the hyperactive phenotype of T cells in autoimmune diseases. METHODS: The expression level of Rai was measured by qRT-PCR in paired peripheral blood T cells and T cells infiltrating tumor tissue and the normal adjacent tissue in CRC patients. The impact of hypoxia-inducible factor (HIF)-1α on Rai expression was evaluated in T cells exposed to hypoxia and by performing chromatin immunoprecipitation assays and RNA interference assays. The mechanism by which upregulation of Rai in T cells promotes T cell exhaustion were evaluated by flow cytometric, qRT-PCR and western blot analyses. RESULTS: We show that Rai is a novel HIF-1α-responsive gene that is upregulated in tumor infiltrating lymphocytes of CRC patients compared to patient-matched circulating T cells. Rai upregulation in T cells promoted Programmed cell Death protein (PD)-1 expression and impaired antigen-dependent degranulation of CD8+ T cells by inhibiting phospho-inactivation of glycogen synthase kinase (GSK)-3, a central regulator of PD-1 expression and T cell-mediated anti-tumor immunity. CONCLUSIONS: Our data identify Rai as a hitherto unknown regulator of the TME-induced exhausted phenotype of human T cells.


Asunto(s)
Neoplasias Colorrectales , Glucógeno Sintasa Quinasa 3 , Humanos , Linfocitos T CD8-positivos , Neoplasias Colorrectales/genética , Hipoxia , Linfocitos Infiltrantes de Tumor , Receptor de Muerte Celular Programada 1/genética , Microambiente Tumoral , Regulación hacia Arriba
5.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084966

RESUMEN

Elimination of virally infected or tumoral cells is mediated by cytotoxic T cells (CTL). Upon antigen recognition, CTLs assemble a specialized signaling and secretory domain at the interface with their target, the immune synapse (IS). During IS formation, CTLs acquire a transient polarity, marked by re-orientation of the centrosome and microtubule cytoskeleton toward the IS, thus directing the transport and delivery of the lytic granules to the target cell. Based on the implication that the kinase Aurora A has a role in CTL function, we hypothesized that its substrate, the mitotic regulator Polo-like kinase 1 (PLK1), might participate in CTL IS assembly. We demonstrate that PLK1 is phosphorylated upon TCR triggering and polarizes to the IS. PLK1 silencing or inhibition results in impaired IS assembly and function, as witnessed by defective synaptic accumulation of T cell receptors (TCRs), as well as compromised centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing. This function is achieved by coupling early signaling to microtubule dynamics, a function pivotal for CTL-mediated cytotoxicity. These results identify PLK1 as a new player in CTL IS assembly and function.


Asunto(s)
Quinasa Tipo Polo 1 , Linfocitos T Citotóxicos , Linfocitos T Citotóxicos/metabolismo , Centrosoma/metabolismo , Transducción de Señal , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
7.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36378226

RESUMEN

CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Peptidil-Dipeptidasa A/metabolismo , Sinapsis/metabolismo , Unión Proteica
8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430728

RESUMEN

Chimeric antigen receptor (CAR) T cell immunotherapy is a revolutionary pillar in cancer treatment. Clinical experience has shown remarkable successes in the treatment of certain hematological malignancies but only limited efficacy against B cell chronic lymphocytic leukemia (CLL) and other cancer types, especially solid tumors. A wide range of engineering strategies have been employed to overcome the limitations of CAR T cell therapy. However, it has become increasingly clear that CARs have unique, unexpected features; hence, a deep understanding of how CARs signal and trigger the formation of a non-conventional immunological synapse (IS), the signaling platform required for T cell activation and execution of effector functions, would lead a shift from empirical testing to the rational design of new CAR constructs. Here, we review current knowledge of CARs, focusing on their structure, signaling and role in CAR T cell IS assembly. We, moreover, discuss the molecular features accounting for poor responses in CLL patients treated with anti-CD19 CAR T cells and propose CLL as a paradigm for diseases connected to IS dysfunctions that could significantly benefit from the development of novel CARs to generate a productive anti-tumor response.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Receptores Quiméricos de Antígenos , Humanos , Leucemia Linfocítica Crónica de Células B/terapia , Leucemia Linfocítica Crónica de Células B/metabolismo , Sinapsis Inmunológicas/metabolismo , Linfocitos T , Activación de Linfocitos
9.
Front Oncol ; 12: 877495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847884

RESUMEN

The microenvironment of lymphoid organs is central to the pathogenesis of chronic lymphocytic leukemia (CLL). Within it, tumor cells find a favourable niche to escape immunosurveillance and acquire pro-survival signals. We have previously reported that a CLL-associated defect in the expression of the pro-apoptotic and pro-oxidant adaptor p66Shc leads to enhanced homing to and accumulation of leukemic cells in the lymphoid microenvironment. The p66Shc deficiency-related impairment in intracellular reactive oxygen species (ROS) production in CLL cells is causally associated to the enhanced expression of the chemokine receptors CCR2, CXCR3 and CCR7, that promote leukemic cell homing to both lymphoid and non-lymphoid organs, suggesting the implication of a ROS-modulated transcription factor(s). Here we show that the activity of the ROS-responsive p65 subunit of the transcription factor NF-κB was hampered in the CLL-derived cell line MEC-1 expressing a NF-κB-luciferase reporter following treatment with H2O2. Similar results were obtained when intracellular ROS were generated by expression of p66Shc, but not of a ROS-defective mutant, in MEC-1 cells. NF-κB activation was associated with increased expression of the chemokine receptors CCR2, CXCR3 and CCR7. Reconstitution of p66Shc in CLL cells normalized intracellular ROS and hampered NF-κB activation, which led to a decrease in the expression of these homing receptors. Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to NF-κB hyperactivation and homing receptor overexpression, providing a mechanistic basis for the enhanced ability of these cells to accumulate in the pro-survival lymphoid niche.

10.
Front Immunol ; 13: 883010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514977

RESUMEN

Cytotoxic T cells (CTLs) are the main cellular mediators of the adaptive immune defenses against intracellular pathogens and malignant cells. Upon recognition of specific antigen on their cellular target, CTLs assemble an immunological synapse where they mobilise their killing machinery that is released into the synaptic cleft to orchestrate the demise of their cell target. The arsenal of CTLs is stored in lysosome-like organelles that undergo exocytosis in response to signals triggered by the T cell antigen receptor following antigen recognition. These organelles include lytic granules carrying a cargo of cytotoxic proteins packed on a proteoglycan scaffold, multivesicular bodies carrying the death receptor ligand FasL, and the recently discovered supramolecular attack particles that carry a core of cytotoxic proteins encased in a non-membranous glycoprotein shell. Here we will briefly review the main features of these killing entities and discuss their interrelationship and interplay in CTL-mediated killing.


Asunto(s)
Gránulos Citoplasmáticos , Linfocitos T Citotóxicos , Exocitosis , Sinapsis Inmunológicas/metabolismo , Perforina/metabolismo
11.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551034

RESUMEN

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Animales , Supervivencia Celular , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Ratones , Ratas , Proteínas Represoras , Tubulina (Proteína)/metabolismo , Pez Cebra/metabolismo
12.
Front Oncol ; 12: 835290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392232

RESUMEN

An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.

13.
Nat Commun ; 13(1): 1029, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210420

RESUMEN

Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.


Asunto(s)
Sinapsis Inmunológicas , Linfocitos T Citotóxicos , Animales , Membrana Celular , Gránulos Citoplasmáticos/metabolismo , Sinapsis Inmunológicas/metabolismo , Ratones
14.
Cancers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944921

RESUMEN

Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment. Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summarize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the pathogenesis of chronic lymphocytic leukemia.

15.
Pharmacol Res ; 174: 105965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34732370

RESUMEN

Survival and expansion of malignant B cells in chronic lymphocytic leukemia (CLL) are highly dependent both on intrinsic defects in the apoptotic machinery and on the interactions with cells and soluble factors in the lymphoid microenvironment. The adaptor protein p66Shc is a negative regulator of antigen receptor signaling, chemotaxis and apoptosis whose loss in CLL B cells contributes to their extended survival and poor prognosis. Hence, the identification of compounds that restore p66Shc expression and function in malignant B cells may pave the way to a new therapeutic approach for CLL. Here we show that a novel oxazepine-based compound (OBC-1) restores p66Shc expression in primary human CLL cells by promoting JNK-dependent STAT4 activation without affecting normal B cells. Moreover, we demonstrate that the potent pro-apoptotic activity of OBC-1 in human leukemic cells directly correlates with p66Shc expression levels and is abrogated when p66Shc is genetically deleted. Preclinical testing of OBC-1 and the novel analogue OBC-2 in Eµ-TCL1 tumor-bearing mice resulted in a significantly longer overall survival and a reduction of the tumor burden in the spleen and peritoneum. Interestingly, OBCs promote leukemic cell mobilization from the spleen to the blood, which correlates with upregulation of sphingosine-1-phosphate receptor expression. In summary, our work identifies OBCs as a promising class of compounds that, by boosting p66Shc expression through the activation of the JNK/STAT4 pathway, display dual therapeutic effects for CLL intervention, namely the ability to mobilize cells from secondary lymphoid organs and a potent pro-apoptotic activity against circulating leukemic cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Oxazepinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones Transgénicos , Oxazepinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
16.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681881

RESUMEN

Similar to Janus, the two-faced god of Roman mythology, the tumor microenvironment operates two opposing and often conflicting activities, on the one hand fighting against tumor cells, while on the other hand, favoring their proliferation, survival and migration to other sites to establish metastases. In the tumor microenvironment, cytotoxic T cells-the specialized tumor-cell killers-also show this dual nature, operating their tumor-cell directed killing activities until they become exhausted and dysfunctional, a process promoted by cancer cells themselves. Here, we discuss the opposing activities of immune cells populating the tumor microenvironment in both cancer progression and anti-cancer responses, with a focus on cytotoxic T cells and on the molecular mechanisms responsible for the efficient suppression of their killing activities as a paradigm of the power of cancer cells to shape the microenvironment for their own survival and expansion.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Neoplasias/patología , Neoplasias/terapia
17.
Blood ; 137(16): 2182-2195, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33181836

RESUMEN

The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here, we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Eµ-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified interleukin-9 (IL-9) as the soluble factor, negatively modulated by p66Shc, that is responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Eµ-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to correlate inversely with residual p66Shc in p66Shc-deficient human CLL cells (n = 52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity, and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma and that p66Shc, by regulating IL-9 expression, fine tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.

19.
Cancers (Basel) ; 12(4)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325830

RESUMEN

Neoplastic B cells from chronic lymphocytic leukemia patients (CLL) have a profound deficiency in the expression of p66Shc, an adaptor protein with pro-apoptotic and pro-oxidant activities. This defect results in leukemic B cell resistance to apoptosis and additionally impinges on the balance between chemokine receptors that control B cell homing to secondary lymphoid organs and the sphingosine phosphate receptor S1PR1 that controls their egress therefrom, thereby favoring leukemic B cell accumulation in the pro-survival lymphoid niche. Ablation of the gene encoding p66Shc in the Eµ-TCL1 mouse model of human CLL enhances leukemogenesis and promotes leukemic cell invasiveness in both nodal and extranodal organs, providing in vivo evidence of the pathogenic role of the p66Shc defect in CLL pathogenesis. Here we present an overview of the functions of p66Shc in B lymphocytes, with a specific focus on the multiple mechanisms exploited by p66Shc to control B cell trafficking and the abnormalities in this process caused by p66Shc deficiency in CLL.

20.
Front Cell Dev Biol ; 8: 193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274384

RESUMEN

p66SHC is a pro-oxidant member of the SHC family of protein adaptors that acts as a negative regulator of cell survival. In lymphocytes p66SHC exploits both its adaptor and its reactive oxygen species (ROS)-elevating function to antagonize mitogenic and survival signaling and promote apoptosis. As a result, p66SHC deficiency leads to the abnormal expansion of peripheral T and B cells and lupus-like autoimmunity. Additionally, a defect in p66SHC expression is a hallmark of B cell chronic lymphocytic leukemia, where it contributes to the accumulation of long-lived neoplastic cells. We have recently provided evidence that p66SHC exerts a further layer of control on B cell homeostasis by acting as a new mitochondrial LC3-II receptor to promote the autophagic demise of dysfunctional mitochondria. Here we discuss this finding in the context of the autophagic control of B cell homeostasis, development, and differentiation in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA