Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Am Soc Nephrol ; 33(1): 39-48, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758983

RESUMEN

BACKGROUND: Accumulating evidence supports an association between nephron number and susceptibility to kidney disease. However, it is not yet possible to directly measure nephron number in a clinical setting. Recent clinical studies have used glomerular density from a single biopsy and whole kidney cortical volume from imaging to estimate nephron number and single nephron glomerular filtration rate. However, the accuracy of these estimates from individual subjects is unknown. Furthermore, it is not clear how sample size or biopsy location may influence these estimates. These questions are critical to study design, and to the potential translation of these tools to estimate nephron number in individual subjects. METHODS: We measured the variability in estimated nephron number derived from needle or virtual biopsies and cortical volume in human kidneys declined for transplantation. We performed multiple needle biopsies in the same kidney, and examined the three-dimensional spatial distribution of nephron density by magnetic resonance imaging. We determined the accuracy of a single-kidney biopsy to predict the mean nephron number estimated from multiple biopsies from the same kidney. RESULTS: A single needle biopsy had a 15% chance and virtual biopsy had a 60% chance of being within 20% of the whole-kidney nephron number. Single needle biopsies could be used to detect differences in nephron number between large cohorts of several hundred subjects. CONCLUSIONS: The number of subjects required to accurately detect differences in nephron number between populations can be predicted on the basis of natural intrakidney variability in glomerular density. A single biopsy is insufficient to accurately predict nephron number in individual subjects.


Asunto(s)
Nefronas/patología , Adulto , Anciano , Anciano de 80 o más Años , Biopsia con Aguja , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Nefronas/diagnóstico por imagen , Tamaño de los Órganos , Reproducibilidad de los Resultados , Adulto Joven
2.
Am J Physiol Renal Physiol ; 321(3): F293-F304, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282957

RESUMEN

Kidney pathologies are often highly heterogeneous. To comprehensively understand kidney structure and pathology, it is critical to develop tools to map tissue microstructure in the context of the whole, intact organ. Magnetic resonance imaging (MRI) can provide a unique, three-dimensional view of the kidney and allows for measurements of multiple pathological features. Here, we developed a platform to systematically render and map gross and microstructural features of the human kidney based on three-dimensional MRI. These features include pyramid number and morphology as well as the associated medulla and cortex. In a subset of these kidneys, we also mapped individual glomeruli and glomerular volumes using cationic ferritin-enhanced MRI to report intrarenal heterogeneity in glomerular density and size. Finally, we rendered and measured regions of nephron loss due to pathology and individual glomerular volumes in each pyramidal unit. This work provides new tools to comprehensively evaluate the kidney across scales, with potential applications in anatomic and physiological research, transplant allograft evaluation, biomarker development, biopsy guidance, and therapeutic monitoring. These image rendering and analysis tools could eventually impact the field of transplantation medicine to improve longevity matching of donor allografts and recipients and reduce discard rates through the direct assessment of donor kidneys.NEW & NOTEWORTHY We report the application of cutting-edge image analysis approaches to characterize the pyramidal geometry, glomerular microstructure, and heterogeneity of the whole human kidney imaged using MRI. This work establishes a framework to improve the detection of microstructural pathology to potentially facilitate disease monitoring or transplant evaluation in the individual kidney.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Enfermedades Renales/patología , Glomérulos Renales/patología , Nefronas/patología , Ferritinas/metabolismo , Humanos , Riñón/patología , Glomérulos Renales/metabolismo , Imagen por Resonancia Magnética/métodos , Sistema Urinario/patología
3.
Contrast Media Mol Imaging ; 9(5): 323-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24764110

RESUMEN

Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Animales , Ferritinas/química , Humanos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA