Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Microbiol ; 14: 92, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24731253

RESUMEN

BACKGROUND: Autotransporters form a large family of outer membrane proteins specifying diverse biological traits of Gram-negative bacteria. In this study, we report the identification and characterization of a novel autotransporter gene product of Burkholderia mallei (locus tag BMA1027 in strain ATCC 23344). RESULTS: Database searches identified the gene in at least seven B. mallei isolates and the encoded proteins were found to be 84% identical. Inactivation of the gene encoding the autotransporter in the genome of strain ATCC 23344 substantially reduces adherence to monolayers of HEp-2 laryngeal cells and A549 type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, expression of the autotransporter on the surface of recombinant E. coli bacteria increases adherence to these cell types by 5-7 fold. The gene specifying the autotransporter was identified in the genome of 29 B. pseudomallei isolates and disruption of the gene in strain DD503 reduced adherence to NHBE cultures by 61%. Unlike B. mallei, the mutation did not impair binding of B. pseudomallei to A549 or HEp-2 cells. Analysis of sera from mice infected via the aerosol route with B. mallei and B. pseudomallei revealed that animals inoculated with as few as 10 organisms produce antibodies against the autotransporter, therefore indicating expression in vivo. CONCLUSIONS: Our data demonstrate that we have identified an autotransporter protein common to the pathogenic species B. mallei and B. pseudomallei which mediates adherence to respiratory epithelial cells and is expressed in vivo during the course of aerosol infection.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Burkholderia mallei/fisiología , Burkholderia pseudomallei/fisiología , Proteínas de Transporte de Membrana/metabolismo , Adhesinas Bacterianas/genética , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Células Epiteliales/microbiología , Escherichia coli/genética , Escherichia coli/fisiología , Femenino , Eliminación de Gen , Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
PLoS One ; 8(7): e67881, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844117

RESUMEN

Moraxella catarrhalis causes significant health problems, including 15-20% of otitis media cases in children and ~10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. In addition, the effectiveness of conjugate vaccines at reducing the incidence of otitis media caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae suggest that M. catarrhalis infections may become even more prevalent. Hence, M. catarrhalis is an important and emerging cause of infectious disease for which the development of a vaccine is highly desirable. Studying the pathogenesis of M. catarrhalis and the testing of vaccine candidates have both been hindered by the lack of an animal model that mimics human colonization and infection. To address this, we intranasally infected chinchilla with M. catarrhalis to investigate colonization and examine the efficacy of a protein-based vaccine. The data reveal that infected chinchillas produce antibodies against antigens known to be major targets of the immune response in humans, thus establishing immune parallels between chinchillas and humans during M. catarrhalis infection. Our data also demonstrate that a mutant lacking expression of the adherence proteins MhaB1 and MhaB2 is impaired in its ability to colonize the chinchilla nasopharynx, and that immunization with a polypeptide shared by MhaB1 and MhaB2 elicits antibodies interfering with colonization. These findings underscore the importance of adherence proteins in colonization and emphasize the relevance of the chinchilla model to study M. catarrhalis-host interactions.


Asunto(s)
Adhesinas Bacterianas/inmunología , Proteínas Bacterianas/inmunología , Chinchilla/inmunología , Moraxella catarrhalis/inmunología , Infecciones por Moraxellaceae/inmunología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Anticuerpos Antibacterianos/inmunología , Adhesión Bacteriana/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/metabolismo , Western Blotting , Línea Celular Tumoral , Chinchilla/microbiología , Modelos Animales de Enfermedad , Haemophilus influenzae/inmunología , Haemophilus influenzae/fisiología , Hemaglutininas/genética , Hemaglutininas/inmunología , Hemaglutininas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Moraxella catarrhalis/genética , Moraxella catarrhalis/fisiología , Infecciones por Moraxellaceae/microbiología , Mutación , Nasofaringe/inmunología , Nasofaringe/microbiología , Otitis Media/inmunología , Otitis Media/microbiología , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/fisiología , Vacunación/métodos
3.
BMC Microbiol ; 10: 250, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20920184

RESUMEN

BACKGROUND: Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. RESULTS: Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. CONCLUSIONS: The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor.


Asunto(s)
Adhesinas Bacterianas/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Células Epiteliales/microbiología , Secuencia de Aminoácidos , Animales , Burkholderia mallei/clasificación , Burkholderia mallei/patogenicidad , Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/patogenicidad , Línea Celular , Femenino , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Infect Immun ; 77(10): 4597-608, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19667048

RESUMEN

Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.


Asunto(s)
Adhesinas Bacterianas/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/fisiología , Células Epiteliales/microbiología , Moraxella catarrhalis/patogenicidad , Mucosa Respiratoria/microbiología , Factores de Virulencia/fisiología , Adhesinas Bacterianas/genética , Adulto , Proteínas Bacterianas/genética , Línea Celular , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Prueba de Complementación Genética , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Humanos , Lactante , Microscopía Confocal , Factores de Virulencia/genética
5.
Infect Immun ; 75(6): 2765-75, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17371858

RESUMEN

Two-partner secretion (TPS) systems are a family of proteins being rapidly identified and characterized in a growing number of gram-negative bacteria. TPS systems mediate the secretion of proteins, many involved in virulence traits such as hemolysis, adherence to epithelial cells, inhibition of bacterial growth, and immunomodulation of the host. A TPS system typically consists of a transporter located in the bacterial outer membrane (OM) which is responsible for the recognition and secretion of at least one large exoprotein. Two of the better-characterized TPS systems specify the Bordetella pertussis FHA and Haemophilus influenzae HMW1/HMW2 proteins. We identified three gene products of Moraxella catarrhalis strain O35E that resemble TPS proteins and designated them MhaC (transporter), MhaB1 (exoprotein), and MhaB2 (exoprotein). Western blot analysis using anti-MhaC, or antibodies reacting to both MhaB1 and MhaB2 (MhaB-reactive), revealed that these antigens are expressed in the OM of 63% of isolates tested. Mutations in the mhaC gene specifying the putative transporter of the M. catarrhalis wild-type strains O35E, O12E, and McGHS1 resulted in the absence of MhaB1/MhaB2 in the OM of mutants. These results are therefore consistent with the Mha proteins functioning as a TPS system. Furthermore, we discovered that these mhaC mutants exhibit markedly decreased binding to human epithelial cells relevant to pathogenesis by M. catarrhalis (Chang, HEp2, A549, and/or 16HBE14o(-)). Expression of O12E MhaC and MhaB1 in a nonadherent strain of Escherichia coli was found to increase the adherence of recombinant bacteria to HEp2 monolayers by sevenfold, thereby demonstrating that this M. catarrhalis TPS system directly mediates binding to human epithelial cells. The construction of isogenic mutants in the mhaB1 and mhaB2 genes of strain O35E also suggests that the MhaB proteins play distinct roles in M. catarrhalis adherence.


Asunto(s)
Adhesinas Bacterianas/fisiología , Adhesión Bacteriana , Células Epiteliales/microbiología , Hemaglutininas/fisiología , Moraxella catarrhalis/química , Adhesinas Bacterianas/genética , ADN Bacteriano/genética , Células Epiteliales/metabolismo , Genes Bacterianos , Humanos , Datos de Secuencia Molecular , Moraxella catarrhalis/patogenicidad
6.
Mutagenesis ; 20(6): 433-40, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16236763

RESUMEN

Homologous recombination (HR) is a mechanism for repairing DNA interstrand crosslinks and double-strand breaks. In mammals, HR requires the activities of the RAD51 family (RAD51, RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1), each of which contains conserved ATP binding sequences (Walker Motifs A and B). RAD51D is a DNA-stimulated ATPase that interacts directly with RAD51C and XRCC2. To test the hypothesis that ATP binding and hydrolysis by RAD51D are required for the repair of interstrand crosslinks, site-directed mutations in Walker Motif A were generated, and complementation studies were performed in Rad51d-deficient mouse embryonic fibroblasts. The K113R and K113A mutants demonstrated a respective 96 and 83% decrease in repair capacity relative to wild-type. Further examination of these mutants, by yeast two-hybrid analyses, revealed an 8-fold reduction in the ability to associate with RAD51C whereas interaction with XRCC2 was retained at a level similar to the S111T control. These cell-based studies are the first evidence that ATP binding and hydrolysis by RAD51D are required for efficient HR repair of DNA interstrand crosslinks.


Asunto(s)
Adenosina Trifosfatasas/química , Reactivos de Enlaces Cruzados/farmacología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/efectos de los fármacos , Recombinasa Rad51/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , ADN/química , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Genes Reporteros , Prueba de Complementación Genética , Ratones , Mitomicina/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Mutación/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA