Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120267

RESUMEN

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain locations encompassing the hypothalamus and the brainstem, where the receptor controls several body functions, including metabolism. In a well-defined pathway to decrease appetite, hypothalamic proopiomelanocortin (POMC) neurons localized in the arcuate nucleus (Arc) project to MC4R neurons in the paraventricular nuclei (PVN) to release the natural MC4R agonist α-melanocyte-stimulating hormone (α-MSH). Arc neurons also project excitatory glutamatergic fibers to the MC4R neurons in the PVN for a fast synaptic transmission to regulate a satiety pathway potentiated by α-MSH. By using super-resolution microscopy, we found that in hypothalamic neurons in a primary culture, postsynaptic density protein 95 (PSD95) colocalizes with GluN1, a subunit of the ionotropic N-methyl-D-aspartate receptor (NMDAR). Thus, hypothalamic neurons form excitatory postsynaptic specializations. To study the MC4R distribution at these sites, tagged HA-MC4R under the synapsin promoter was expressed in neurons by adeno-associated virus (AAV) gene transduction. HA-MC4R immunofluorescence peaked at the center and in proximity to the PSD95- and NMDAR-expressing sites. These data provide morphological evidence that MC4R localizes together with glutamate receptors at postsynaptic and peri-postsynaptic sites.


Asunto(s)
Hipotálamo , Neuronas , Receptor de Melanocortina Tipo 4 , Animales , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Neuronas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citología , Ratones , Sinapsis/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Células Cultivadas , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Sci Data ; 11(1): 483, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729970

RESUMEN

The Sparsely Annotated Region and Organ Segmentation (SAROS) dataset was created using data from The Cancer Imaging Archive (TCIA) to provide a large open-access CT dataset with high-quality annotations of body landmarks. In-house segmentation models were employed to generate annotation proposals on randomly selected cases from TCIA. The dataset includes 13 semantic body region labels (abdominal/thoracic cavity, bones, brain, breast implant, mediastinum, muscle, parotid/submandibular/thyroid glands, pericardium, spinal cord, subcutaneous tissue) and six body part labels (left/right arm/leg, head, torso). Case selection was based on the DICOM series description, gender, and imaging protocol, resulting in 882 patients (438 female) for a total of 900 CTs. Manual review and correction of proposals were conducted in a continuous quality control cycle. Only every fifth axial slice was annotated, yielding 20150 annotated slices from 28 data collections. For the reproducibility on downstream tasks, five cross-validation folds and a test set were pre-defined. The SAROS dataset serves as an open-access resource for training and evaluating novel segmentation models, covering various scanner vendors and diseases.


Asunto(s)
Tomografía Computarizada por Rayos X , Imagen de Cuerpo Entero , Femenino , Humanos , Masculino , Procesamiento de Imagen Asistido por Computador
3.
Invest Radiol ; 59(9): 635-645, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436405

RESUMEN

OBJECTIVES: Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). MATERIALS AND METHODS: This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). RESULTS: For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58-99.63] for the noncontrast phase, 99.50% [95% CI, 99.49-99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10-99.15] for the arterial phase, 99.8% [95% CI, 99.79-99.81] for the venous phase, and 99.7% [95% CI, 99.68-99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27-97.35] and 97.38% [95% CI, 97.34-97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89-99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71-99.73] and 99.31% [95% CI, 99.27-99.33] was achieved with the first and second annotator, respectively. CONCLUSIONS: The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.


Asunto(s)
Medios de Contraste , Aprendizaje Automático , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Tracto Gastrointestinal/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Persona de Mediana Edad , Algoritmos
4.
J Pathol Inform ; 15: 100345, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075015

RESUMEN

Introduction: Perihilar cholangiocarcinoma (PHCC) is a rare malignancy with limited survival prediction accuracy. Artificial intelligence (AI) and digital pathology advancements have shown promise in predicting outcomes in cancer. We aimed to improve prognosis prediction for PHCC by combining AI-based histopathological slide analysis with clinical factors. Methods: We retrospectively analyzed 317 surgically treated PHCC patients (January 2009-December 2018) at the University Hospital of Essen. Clinical data, surgical details, pathology, and outcomes were collected. Convolutional neural networks (CNN) analyzed whole-slide images. Survival models incorporated clinical and histological features. Results: Among 142 eligible patients, independent survival predictors were tumor grade (G), tumor size (T), and intraoperative transfusion requirement. The CNN-based model combining clinical and histopathological features demonstrates proof of concept in prognosis prediction, limited by histopathological complexity and feature extraction challenges. However, the CNN-based model generated heatmaps assisting pathologists in identifying areas of interest. Conclusion: AI-based digital pathology showed potential in PHCC prognosis prediction, though refinement is necessary for clinical relevance. Future research should focus on enhancing AI models and exploring novel approaches to improve PHCC patient prognosis prediction.

5.
Blood ; 142(26): 2315-2326, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37890142

RESUMEN

ABSTRACT: Platelet demand management (PDM) is a resource-consuming task for physicians and transfusion managers of large hospitals. Inpatient numbers and institutional standards play significant roles in PDM. However, reliance on these factors alone commonly results in platelet shortages. Using data from multiple sources, we developed, validated, tested, and implemented a patient-specific approach to support PDM that uses a deep learning-based risk score to forecast platelet transfusions for each hospitalized patient in the next 24 hours. The models were developed using retrospective electronic health record data of 34 809 patients treated between 2017 and 2022. Static and time-dependent features included demographics, diagnoses, procedures, blood counts, past transfusions, hematotoxic medications, and hospitalization duration. Using an expanding window approach, we created a training and live-prediction pipeline with a 30-day input and 24-hour forecast. Hyperparameter tuning determined the best validation area under the precision-recall curve (AUC-PR) score for long short-term memory deep learning models, which were then tested on independent data sets from the same hospital. The model tailored for hematology and oncology patients exhibited the best performance (AUC-PR, 0.84; area under the receiver operating characteristic curve [ROC-AUC], 0.98), followed by a multispecialty model covering all other patients (AUC-PR, 0.73). The model specific to cardiothoracic surgery had the lowest performance (AUC-PR, 0.42), likely because of unexpected intrasurgery bleedings. To our knowledge, this is the first deep learning-based platelet transfusion predictor enabling individualized 24-hour risk assessments at high AUC-PR. Implemented as a decision-support system, deep-learning forecasts might improve patient care by detecting platelet demand earlier and preventing critical transfusion shortages.


Asunto(s)
Aprendizaje Profundo , Humanos , Transfusión de Plaquetas , Estudios Retrospectivos , Aprendizaje Automático , Medición de Riesgo
6.
BMC Health Serv Res ; 23(1): 734, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415138

RESUMEN

BACKGROUND: We present FHIR-PYrate, a Python package to handle the full clinical data collection and extraction process. The software is to be plugged into a modern hospital domain, where electronic patient records are used to handle the entire patient's history. Most research institutes follow the same procedures to build study cohorts, but mainly in a non-standardized and repetitive way. As a result, researchers spend time writing boilerplate code, which could be used for more challenging tasks. METHODS: The package can improve and simplify existing processes in the clinical research environment. It collects all needed functionalities into a straightforward interface that can be used to query a FHIR server, download imaging studies and filter clinical documents. The full capacity of the search mechanism of the FHIR REST API is available to the user, leading to a uniform querying process for all resources, thus simplifying the customization of each use case. Additionally, valuable features like parallelization and filtering are included to make it more performant. RESULTS: As an exemplary practical application, the package can be used to analyze the prognostic significance of routine CT imaging and clinical data in breast cancer with tumor metastases in the lungs. In this example, the initial patient cohort is first collected using ICD-10 codes. For these patients, the survival information is also gathered. Some additional clinical data is retrieved, and CT scans of the thorax are downloaded. Finally, the survival analysis can be computed using a deep learning model with the CT scans, the TNM staging and positivity of relevant markers as input. This process may vary depending on the FHIR server and available clinical data, and can be customized to cover even more use cases. CONCLUSIONS: FHIR-PYrate opens up the possibility to quickly and easily retrieve FHIR data, download image data, and search medical documents for keywords within a Python package. With the demonstrated functionality, FHIR-PYrate opens an easy way to assemble research collectives automatically.


Asunto(s)
Ciencia de los Datos , Estándar HL7 , Humanos , Registros Electrónicos de Salud , Programas Informáticos , Tomografía Computarizada por Rayos X
7.
Sci Rep ; 12(1): 13419, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927564

RESUMEN

Patients with neuroendocrine tumors of gastro-entero-pancreatic origin (GEP-NET) experience changes in fat and muscle composition. Dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA) are currently used to analyze body composition. Changes thereof could indicate cancer progression or response to treatment. This study examines the correlation between CT-based (computed tomography) body composition analysis (BCA) and DXA or BIA measurement. 74 GEP-NET-patients received whole-body [68Ga]-DOTATOC-PET/CT, BIA, and DXA-scans. BCA was performed based on the non-contrast-enhanced, 5 mm, whole-body-CT images. BCA from CT shows a strong correlation between body fat ratio with DXA (r = 0.95, ρC = 0.83) and BIA (r = 0.92, ρC = 0.76) and between skeletal muscle ratio with BIA: r = 0.81, ρC = 0.49. The deep learning-network achieves highly accurate results (mean Sørensen-Dice-score 0.93). Using BCA on routine Positron emission tomography/CT-scans to monitor patients' body composition in the diagnostic workflow can reduce additional exams whilst substantially amplifying measurement in slower progressing cancers such as GEP-NET.


Asunto(s)
Composición Corporal , Tomografía Computarizada por Tomografía de Emisión de Positrones , Absorciometría de Fotón/métodos , Composición Corporal/fisiología , Índice de Masa Corporal , Impedancia Eléctrica , Humanos , Tomografía Computarizada por Rayos X
8.
J Biol Chem ; 298(6): 101939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35436470

RESUMEN

Microtubule targeting agents (MTAs) are widely used cancer chemotherapeutics which conventionally exert their effects during mitosis, leading to mitotic or postmitotic death. However, accumulating evidence suggests that MTAs can also generate death signals during interphase, which may represent a key mechanism in the clinical setting. We reported previously that vincristine and other microtubule destabilizers induce death not only in M phase but also in G1 phase in primary acute lymphoblastic leukemia cells. Here, we sought to investigate and compare the pathways responsible for phase-specific cell death. Primary acute lymphoblastic leukemia cells were subjected to centrifugal elutriation, and cell populations enriched in G1 phase (97%) or G2/M phases (80%) were obtained and treated with vincristine. We found death of M phase cells was associated with established features of mitochondrial-mediated apoptosis, including Bax activation, loss of mitochondrial transmembrane potential, caspase-3 activation, and nucleosomal DNA fragmentation. In contrast, death of G1 phase cells was not associated with pronounced Bax or caspase-3 activation but was associated with loss of mitochondrial transmembrane potential, parylation, nuclear translocation of apoptosis-inducing factor and endonuclease G, and supra-nucleosomal DNA fragmentation, which was enhanced by inhibition of autophagy. The results indicate that microtubule depolymerization induces distinct cell death pathways depending on during which phase of the cell cycle microtubule perturbation occurs. The observation that a specific type of drug can enter a single cell type and induce two different modes of death is novel and intriguing. These findings provide a basis for advancing knowledge of clinical mechanisms of MTAs.


Asunto(s)
Apoptosis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Vincristina , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular , Activación Enzimática/efectos de los fármacos , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vincristina/metabolismo , Vincristina/farmacología , Vincristina/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo
9.
Cell Death Discov ; 6: 8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32123584

RESUMEN

Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.

10.
J Endocrinol ; 241(1): R1-R33, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30812013

RESUMEN

The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.


Asunto(s)
Apetito/fisiología , Melanocortinas/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal/fisiología , Animales , Fármacos Antiobesidad/farmacología , Humanos , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/prevención & control , Núcleo Hipotalámico Paraventricular/metabolismo , Péptidos/farmacología , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/efectos de los fármacos , alfa-MSH/metabolismo
11.
Sci Rep ; 7(1): 807, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28400597

RESUMEN

Modulation of the immune system can produce anti-tumor responses in various cancer types, including melanoma. Recently, immune checkpoint inhibitors (ICI), in single agent and combination regimens, have produced durable and long-lasting clinical responses in a subset of metastatic melanoma patients. These monoclonal antibodies, developed against CTLA-4 and PD-1, block immune-inhibitory receptors on activated T-cells, amplifying the immune response. However, even when using anti-CTLA-4 and anti-PD-1 in combination, approximately half of patients exhibit innate resistance and suffer from disease progression. Currently, it is impossible to predict therapeutic response. Here, we report the first proteomic and histone epigenetic analysis of patient metastatic melanoma tumors taken prior to checkpoint blockade, which revealed biological signatures that can stratify patients as responders or non-responders. Furthermore, our findings provide evidence of mesenchymal transition, a known mechanism of immune-escape, in non-responding melanoma tumors. We identified elevated histone H3 lysine (27) trimethylation (H3K27me3), decreased E-cadherin, and other protein features indicating a more mesenchymal phenotype in non-responding tumors. Our results have implications for checkpoint inhibitor therapy as patient specific responsiveness can be predicted through readily assayable proteins and histone epigenetic marks, and pathways activated in non-responders have been identified for therapeutic development to enhance responsiveness.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígeno CTLA-4/inmunología , Resistencia a Antineoplásicos , Código de Histonas , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Transición Epitelial-Mesenquimal , Humanos , Melanoma/genética , Melanoma/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteoma/metabolismo , Linfocitos T/metabolismo
12.
Mol Endocrinol ; 29(11): 1619-33, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26418335

RESUMEN

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.


Asunto(s)
Proteína Relacionada con Agouti/farmacología , AMP Cíclico/metabolismo , Péptidos Cíclicos/farmacología , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/antagonistas & inhibidores , alfa-MSH/análogos & derivados , alfa-MSH/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenilato Quinasa/metabolismo , Animales , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Ratones , Péptidos/farmacología , Fotoblanqueo , Conformación Proteica , Receptor de Melanocortina Tipo 4/genética , Tetrahidroisoquinolinas/farmacología , Triazoles/farmacología , alfa-MSH/farmacología
13.
PLoS One ; 9(6): e98568, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887587

RESUMEN

Ecto-5'-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel "trafficking-opathy".


Asunto(s)
5'-Nucleotidasa/genética , Mutación , Animales , Células COS , Chlorocebus aethiops , Proteínas Ligadas a GPI/genética , Humanos
14.
Proc Natl Acad Sci U S A ; 110(49): E4733-42, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248383

RESUMEN

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in neurons of the hypothalamus where it regulates food intake. MC4R responds to an agonist, α-melanocyte-stimulating hormone (α-MSH) and to an antagonist/inverse agonist, agouti-related peptide (AgRP), which are released by upstream neurons. Binding to α-MSH leads to stimulation of receptor activity and suppression of food intake, whereas AgRP has opposite effects. MC4R cycles constantly between the plasma membrane and endosomes and undergoes agonist-mediated desensitization by being routed to lysosomes. MC4R desensitization and increased AgRP expression are thought to decrease the effectiveness of MC4R agonists as an antiobesity treatment. In this study, α-MSH, instead of being delivered extracellularly, is targeted to the endoplasmic reticulum (ER) of neuronal cells and cultured hypothalamic neurons. We find that the ER-targeted agonist associates with MC4R at this location, is transported to the cell surface, induces constant cAMP and AMP kinase signaling at maximal amplitude, abolishes desensitization of the receptor, and promotes both cell-surface expression and constant signaling by an obesity-linked MC4R variant, I316S, that otherwise is retained in the ER. Formation of the MC4R/agonist complex in the ER stabilizes the receptor in an active conformation that at the cell surface is insensitive to antagonism by AgRP and at the endosomes is refractory to routing to the lysosomes. The data indicate that targeting agonists to the ER can stabilize an active conformation of a G protein-coupled receptor that does not become desensitized, suggesting a target for therapy.


Asunto(s)
Regulación del Apetito/fisiología , Retículo Endoplásmico/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Conformación Proteica , Receptor de Melanocortina Tipo 4/química , alfa-MSH/farmacología , Proteína Relacionada con Agouti/farmacología , Análisis de Varianza , Animales , Regulación del Apetito/genética , AMP Cíclico/metabolismo , Técnicas para Inmunoenzimas , Lisosomas/metabolismo , Ratones , Microscopía Fluorescente , Mutación Missense/genética , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/antagonistas & inhibidores , Receptor de Melanocortina Tipo 4/genética
15.
PLoS One ; 7(12): e50894, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251400

RESUMEN

Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈ 3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine.


Asunto(s)
Retículo Endoplásmico/genética , Obesidad/genética , Receptor de Melanocortina Tipo 4/genética , Ubiquitinación/genética , Alelos , Línea Celular , Niño , Preescolar , AMP Cíclico/metabolismo , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Femenino , Frecuencia de los Genes , Humanos , Masculino , Mutación , Obesidad/metabolismo , Pliegue de Proteína , Receptor de Melanocortina Tipo 4/metabolismo , Transfección , Ubiquitina/genética , Ubiquitina/metabolismo
16.
J Biol Chem ; 286(48): 41563-41577, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21976666

RESUMEN

α(1)-Antitrypsin is a serine protease inhibitor secreted by hepatocytes. A variant of α(1)-antitrypsin with an E342K (Z) mutation (ATZ) has propensity to form polymers, is retained in the endoplasmic reticulum (ER), is degraded by both ER-associated degradation and autophagy, and causes hepatocyte loss. Constant features in hepatocytes of PiZZ individuals and in PiZ transgenic mice expressing ATZ are the formation of membrane-limited globular inclusions containing ATZ and mitochondrial damage. Expression of ATZ in the liver does not induce the unfolded protein response (UPR), a protective mechanism aimed to maintain ER homeostasis in the face of an increased load of proteins. Here we found that in hepatoma cells the ER E3 ligase HRD1 functioned to degrade most of the ATZ before globular inclusions are formed. Activation of the activating transcription factor 6 (ATF6) branch of the UPR by expression of spliced ATF6(1-373) decreased intracellular accumulation of ATZ and the formation of globular inclusions by a pathway that required HRD1 and the proteasome. Expression of ATF6(1-373) in ATZ-expressing hepatoma cells did not induce autophagy and increased the level of the proapoptotic factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) but did not lead to apoptotic DNA fragmentation. Expression of ATF6(1-373) did not cause inhibition of protein synthesis and prevented mitochondrial damage induced by ATZ expression. It was concluded that activation of the ATF6 pathway of the UPR limits ATZ-dependent cell toxicity by selectively promoting ER-associated degradation of ATZ and is thereby a potential target to prevent hepatocyte loss in addition to autophagy-enhancing drugs.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Carcinoma Hepatocelular/metabolismo , Mitocondrias Hepáticas/metabolismo , Mutación Missense , Proteínas de Neoplasias/metabolismo , alfa 1-Antitripsina/metabolismo , Factor de Transcripción Activador 6/genética , Sustitución de Aminoácidos , Animales , Apoptosis/genética , Autofagia/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fragmentación del ADN , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Ratones , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/patología , Proteínas de Neoplasias/genética , Proteolisis , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/genética , alfa 1-Antitripsina/genética
17.
Mol Endocrinol ; 24(9): 1805-21, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631012

RESUMEN

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain where it controls food intake. Many obesity-linked MC4R variants are poorly expressed at the plasma membrane and are retained intracellularly. We have studied the intracellular localization of four obesity-linked MC4R variants, P78L, R165W, I316S, and I317T, in immortalized neurons. We find that these variants are all retained in the endoplasmic reticulum (ER), are ubiquitinated to a greater extent than the wild-type (wt) receptor, and induce ER stress with increased levels of ER chaperones as compared with wt-MC4R and appearance of CCAAT/enhancer-binding protein homologous protein (CHOP). Expression of the X-box-binding-protein-1 (XBP-1) with selective activation of a protective branch of the unfolded protein response did not have any effect on the cell surface expression of MC4R-I316S. Conversely, the pharmacological chaperone 4-phenyl butyric acid (PBA) increased the cell surface expression of wt-MC4R, MC4R-I316S, and I317T by more than 40%. PBA decreased ubiquitination of MC4R-I316S and prevented ER stress induced by expression of the mutant, suggesting that the drug functions to promote MC4R folding. MC4R-I316S rescued to the cell surface is functional, with a 52% increase in agonist-induced cAMP production, as compared with untreated cells. Also direct inhibition of wt-MC4R and MC4R-I316S ubiquitination by a specific inhibitor of the ubiquitin-activating enzyme 1 increased by approximately 40% the expression of the receptors at the cell surface, and the effects of PBA and ubiquitin-activating enzyme 1 were additive. These data offer a cell-based rationale that drugs that improve MC4R folding or decrease ER-associated degradation of the receptor may function to treat some forms of hereditary obesity.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Mutación/genética , Obesidad/genética , Fenilbutiratos/farmacología , Pliegue de Proteína , Receptor de Melanocortina Tipo 4/genética , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , AMP Cíclico/biosíntesis , Retículo Endoplásmico/efectos de los fármacos , Humanos , Proteínas Mutantes/metabolismo , Obesidad/patología , Pliegue de Proteína/efectos de los fármacos , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitinación/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
18.
J Clin Endocrinol Metab ; 95(3): 1450-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20097709

RESUMEN

CONTEXT: Noncoding single-nucleotide polymorphisms (SNPs) within the TCF7L2 gene are confirmed risk factors for type 2 diabetes, but the mechanism by which they increase risk is unknown. OBJECTIVE: We hypothesized that associated SNPs alter TCF7L2 splicing and that splice forms have altered biological roles. DESIGN: Splice forms and 5' and 3' untranslated regions were characterized in sc adipose, muscle, liver, HepG2 cells, pancreas, and islet. Isoform-specific transcript levels were quantified in sc adipose. Alternative splice forms were characterized in HepG2 liver cells under glucose and insulin conditions and in SGBS cells with differentiation. Major isoforms were characterized by transfection. SETTING: The study was conducted at an ambulatory general clinical research center. PATIENTS: PATIENTS included 78 healthy, nondiabetic study subjects characterized for insulin sensitivity and secretion. RESULTS: We identified 32 alternatively spliced transcripts and multiple-length 3' untranslated region transcripts in adipose, muscle, islet, and pancreas. Alternative exons 3a, 12, 13, and 13a were observed in all tissues, whereas exon 13b was islet specific. Transcripts retaining exons 13 and 13a but not total TCF7L2 transcripts were significantly correlated with both obesity measures (P < 0.01) and rs7903146 genotype (P < 0.026) in sc adipose. Insulin (5-10 nm) suppressed all TCF7L2 isoforms in SGBS cells but suppressed exon 13a-containing isoforms most significantly (P < 0.001). The isoform distribution differed throughout SGBS cell differentiation. Isoforms with predicted early stop codons yielded stable proteins of the predicted size, bound beta-catenin, and targeted correctly to the nucleus. CONCLUSIONS: Intronic TCF7L2 variants may regulate alternative transcript isoforms, which in turn may have distinct physiologic roles.


Asunto(s)
Empalme Alternativo/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción TCF/genética , Tejido Adiposo/metabolismo , Adolescente , Adulto , Análisis de Varianza , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exones , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética , Genotipo , Células Hep G2 , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Especificidad de Órganos , Páncreas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción TCF/metabolismo , Proteína 2 Similar al Factor de Transcripción 7
19.
Mol Biol Cell ; 19(2): 572-86, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18045994

RESUMEN

A variant alpha1-antitrypsin with E342K mutation has a high tendency to form intracellular polymers, and it is associated with liver disease. In the hepatocytes of individuals carrying the mutation, alpha1-antitrypsin localizes both to the endoplasmic reticulum (ER) and to membrane-surrounded inclusion bodies (IBs). It is unclear whether the IBs contribute to cell toxicity or whether they are protective to the cell. We found that in hepatoma cells, mutated alpha1-antitrypsin exited the ER and accumulated in IBs that were negative for autophagosomal and lysosomal markers, and contained several ER components, but not calnexin. Mutated alpha1-antitrypsin induced IBs also in neuroendocrine cells, showing that formation of these organelles is not cell type specific. In the presence of IBs, ER function was largely maintained. Increased levels of calnexin, but not of protein disulfide isomerase, inhibited formation of IBs and lead to retention of mutated alpha1-antitrypsin in the ER. In hepatoma cells, shift of mutated alpha1-antitrypsin localization to the ER by calnexin overexpression lead to cell shrinkage, ER stress, and impairment of the secretory pathway at the ER level. We conclude that segregation of mutated alpha1-antitrypsin from the ER to the IBs is a protective cell response to maintain a functional secretory pathway.


Asunto(s)
Citoprotección , Retículo Endoplásmico/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas Mutantes/metabolismo , alfa 1-Antitripsina/metabolismo , Animales , Autofagia , Biomarcadores/metabolismo , Calnexina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/ultraestructura , Línea Celular Tumoral , Tamaño de la Célula , Retículo Endoplásmico/ultraestructura , Humanos , Cuerpos de Inclusión/enzimología , Cuerpos de Inclusión/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Neuritas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuropéptidos/metabolismo , Fagosomas/metabolismo , Fagosomas/ultraestructura , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Serpinas/metabolismo , Factores de Tiempo , Neuroserpina
20.
J Biol Chem ; 282(7): 4963-4974, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17166828

RESUMEN

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that binds alpha-melanocyte-stimulating hormone (alpha-MSH) and has a central role in the regulation of appetite and energy expenditure. Most GPCRs are endocytosed following binding to the agonist and receptor desensitization. Other GPCRs are internalized and recycled back to the plasma membrane constitutively, in the absence of the agonist. In unstimulated neuroblastoma cells and immortalized hypothalamic neurons, epitopetagged MC4R was localized both at the plasma membrane and in an intracellular compartment. These two pools of receptors were in dynamic equilibrium, with MC4R being rapidly internalized and exocytosed. In the absence of alpha-MSH, a fraction of cell surface MC4R localized together with transferrin receptor and to clathrin-coated pits. Constitutive MC4R internalization was impaired by expression of a dominant negative dynamin mutant. Thus, MC4R is internalized together with transferrin receptor by clathrin-dependent endocytosis. Cell exposure toalpha-MSH reduced the amount of MC4R at the plasma membrane by blocking recycling of a fraction of internalized receptor, rather than by increasing its rate of endocytosis. The data indicate that, in neuronal cells, MC4R recycles constitutively and that alpha-MSH modulates MC4R residency at the plasma membrane by acting at an intracellular sorting step.


Asunto(s)
Hipotálamo/metabolismo , Neuronas/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , alfa-MSH/farmacología , Animales , Apetito/efectos de los fármacos , Apetito/genética , Línea Celular Transformada , Línea Celular Tumoral , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Exocitosis/efectos de los fármacos , Exocitosis/genética , Expresión Génica , Humanos , Ratones , Mutación , Transporte de Proteínas/efectos de los fármacos , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/genética , Receptores de Transferrina/metabolismo , Retinoblastoma/metabolismo , alfa-MSH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA