Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neurochem Int ; 174: 105679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309665

RESUMEN

Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Síndrome de Down , Humanos , Ratones , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-35697171

RESUMEN

Adverse social experiences during adolescence are associated with the appearance of mental illness in adulthood. Social defeat (SD) is an ethologically valid murine model to study the consequences of social stress. In adolescent mice, SD induces depressive-like behaviors, increased anxiety and potentiates the reinforcing effects of cocaine and alcohol. However, not all mice exposed to SD will be susceptible to these effects. Adult mice resilient to the effects of SD show a consistent phenotype being resilient to depressive-like behaviors and to the increase in cocaine and alcohol consumption. The aim of the present study was to characterize the resilient phenotype to depressive-like behaviors and increase cocaine and ethanol rewarding effects of mice socially defeated during adolescence. To that end, adolescent mice were exposed to repeated SD, and 24 h after the last encounter, they underwent a social interaction test (SIT) in order to evaluate depressive-like behaviors. Cocaine-induced reward conditioning and ethanol intake was evaluated in two different sets of mice 3 weeks after the last SD using cocaine-induced conditioned place preference (CPP) and oral ethanol self-administration (SA). The neuroinflammation response was measured at the end of the experimental procedure by measuring striatal and cortical levels of IL-6 and CX3CL1. The results confirmed that a comparable percentage of adolescent mice develop resilience to depressive-like behaviors to that observed in adult mice. However, increased anxiety was more severe in resilient mice. Likewise, an increased preference for an ineffective dose of cocaine and an increased ethanol consumption was observed in resilient mice compared to controls. The increase in IL-6 and CX3CL1 was mainly observed in the striatum of susceptible mice compared to that of control mice. Our results confirm that, contrary to prior assumptions in adults, responses to SD stress are more complex and singular in adolescents, and caution should be taken for the correct interpretation and translation of those phenotypes.


Asunto(s)
Cocaína , Derrota Social , Animales , Etanol , Interleucina-6 , Masculino , Ratones , Recompensa , Estrés Psicológico
3.
PLoS One ; 13(12): e0209291, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30557308

RESUMEN

It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Cocaína/farmacología , Indometacina/farmacología , Psicotrópicos/farmacología , Recompensa , Animales , Ansiedad/inmunología , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/inmunología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Dominación-Subordinación , Conducta Exploratoria , Interleucina-6/metabolismo , Ratones , Distribución Aleatoria , Estrés Psicológico/inmunología
4.
Histol Histopathol ; 33(1): 101-115, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28374408

RESUMEN

Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.


Asunto(s)
Síndrome de Down/metabolismo , Síndrome de Down/patología , Hipocampo/metabolismo , Hipocampo/patología , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/patología , Factores de Edad , Animales , Biomarcadores/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Proteína GAP-43/metabolismo , Predisposición Genética a la Enfermedad , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Fenotipo , Células Piramidales/metabolismo , Células Piramidales/patología , Ácidos Siálicos/metabolismo
5.
Alcohol Alcohol ; 48(1): 15-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23118092

RESUMEN

AIMS: Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS: Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS: We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS: The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.


Asunto(s)
Etanol/toxicidad , Aparato de Golgi/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Células Cultivadas , Etanol/administración & dosificación , Femenino , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hipocampo/metabolismo , Hipocampo/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA