Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 47: 128202, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34139325

RESUMEN

Cathepsin C plays a key role in the activation of several degradative enzymes linked to tissue destruction in chronic inflammatory and autoimmune diseases. Therefore, Cathepsin C inhibitors could potentially be effective therapeutics for the treatment of diseases such as chronic obstructive pulmonary disease (COPD) or acute respiratory distress syndrome (ARDS). In our efforts towards the development of a novel series of Cathepsin C inhibitors, we started working around AZD5248 (1), an α-amino acid based scaffold having potential liability of aortic binding. A novel series of amidoacetonitrile based Cathepsin C inhibitors were developed by the application of a conformational restriction strategy on 1. In particular, this work led to the development of a potent and selective Cathepsin C inhibitor 3p, free of aortic binding liability.


Asunto(s)
Aorta/metabolismo , Tratamiento Farmacológico de COVID-19 , Catepsina C/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Acetonitrilos/química , Acetonitrilos/farmacología , Aminoácidos/química , Aminoácidos/farmacología , Compuestos de Bifenilo/farmacología , COVID-19/complicaciones , Humanos , Modelos Moleculares , Estructura Molecular , Síndrome de Dificultad Respiratoria/etiología , Relación Estructura-Actividad
2.
Dalton Trans ; 50(5): 1721-1732, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448276

RESUMEN

Two homometallic class-I dinuclear mixed valence cobalt complexes, [(N3)CoIIIL1(µ-C6H4(NO2)CO2)CoII(N3)] (1) and [(N3)CoIIIL2(µ-C6H4(NO2)CO2)CoII(N3)] (2), have been synthesized using multisite N2O4 coordination ligands, H2L1 {where H2L1 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-methoxyphenol) and H2L2 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)}. Each complex has been structurally characterized by single crystal X-ray diffraction and spectral analysis. Both the cobalt centers in these dinuclear complexes adopt a distorted-octahedral geometry, where the cobalt(iii) center resides at the inner N2O2 cavity and the cobalt(ii) center resides at the outer O4 cavity of the reduced Schiff base. Both of them show good electrical conductivity, which has been rationalized by band gap measurements. The band gap in the solid state has been determined by experimental and DFT calculations and it confirms that each of the two complexes behaves as a semiconductor. The space-charge-limited current (SCLC) theory is employed to evaluate the charge transport parameters such as effective carrier mobility and transit time for both complexes. The difference in the conductivity values of the complexes may be correlated with the strengths of extended supramolecular interactions in the complexes. Bader's quantum theory of atoms-in-molecules (QTAIM) is applied extensively to get quantitative and qualitative insights into the physical nature of weak non-covalent interactions. In addition, the non-covalent interaction reduced density gradient (NCI-RDG) methods well support the presence of such non-covalent intermolecular interactions.

3.
Dalton Trans ; 49(46): 16778-16790, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33174540

RESUMEN

Two dinuclear cobalt(ii) complexes, [(dmso)CoIIL1(µ-(m-NO2)C6H4COO)CoII(NCS)] (1) and [(dmso)CoIIL2(µ-(m-NO2)C6H4COO)CoII(NCS)] (2) [dmso = dimethylsulfoxide, H2L1 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-methoxyphenol) and H2L2 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)] have been synthesized and structurally characterized by single-crystal X-ray diffraction, magnetic-susceptibility measurements and various spectroscopic techniques. Each complex contains a cobalt(ii) center with a slightly distorted octahedral geometry and a second cobalt(ii) center with a distorted trigonal prismatic one. To obtain insight into the physical nature of weak non-covalent interactions, we have extensively used the Bader's quantum theory of atoms-in-molecules (QTAIM). In addition, the non-covalent interaction reduced density gradient (NCI-RDG) methods established the presence of such non-covalent intermolecular interactions. Variable temperature magnetic susceptibility measurements show that both cobalt centers in each complex are in the high spin state (S = 3/2) and both complexes show weak ferromagnetic couplings through the double phenoxido bridges (J = 3.36(3) cm-1 in 1 and 4.56(2) cm-1 in 2). The magnetic properties of both complexes can be fitted to a Co(ii) dimer model including similar orbital reduction factors (α = -0.94(1) for 1 and -0.85(1) for 2) although different zero field splitting parameters D(1) = 11.0(4) cm-1 and D(2) = 19.5(4) cm-1 in 1 and D(1) = 8.2(4) cm-1 and D(2) = -1.3(4) cm-1 in 2. AC magnetic measurements reveal that the CoII2 unit in complex 2 exhibits field-induced slow relaxation of the magnetization at low temperatures and high frequencies.

4.
Dalton Trans ; 48(30): 11433-11447, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31290506

RESUMEN

Two heteronuclear cobalt(iii)/sodium complexes, [(H2O)2Co(H2L1)Na(N3)2] (1) and (µ-N3)2[(N3)Co(H2L2)Na]2 (2) have been synthesized by the reaction of two compartmental reduced Schiff bases, H2L1 [(1,2-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)] and H2L2 [(2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)], with cobalt(ii) nitrate hexahydrate in methanol. Structures of both the complexes have been confirmed by single crystal X-ray diffraction analysis. In each complex, cobalt(iii) is located in the inner N2O2 compartment and sodium is placed in the outer O2O'2 compartment of the respective ligands. In complex 1, the saturated five-membered chelate ring assumes a half-chair conformation, thereby facilitating the anti-orientations of two N-H bonds, which in turn favours the formation of very strong hydrogen bonds forming an infinite one-dimensional assembly. Formation of this one-dimensional chain is also supported by C-Hπ (arene) interactions. On the other hand, the best hydrogen bond donor NH groups are in syn disposition (as the saturated chelate ring is six-membered and assumes a chair conformation) and do not participate in the crystal packing in complex 2. However, very strong C-Hπ(N3) interactions have been established in complex 2, where the π-system of the bridging azide ligand participates as the π-donor. A search in the Cambridge structural database (CSD) has also been carried out to investigate the abundance and directionality of the interaction using different pseudohalides. Energies of all these supramolecular interactions were estimated by DFT calculations including Grimme's dispersion correction and characterized by the NCI plot index computational tool.

5.
Bioorg Med Chem Lett ; 24(20): 4838-44, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25260492

RESUMEN

mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed. A set of analogs (28, 48, 49) were identified with <10nM potencies in the recombinant human mPGES-1 enzyme and in the A549 cellular assays. These analogs were also found to be potent in the human whole blood assay (<400 nM). Furthermore, the representative compound 48 was shown to be selective with other prostanoid synthases and was able to effectively regulate PGE2 biosynthesis in clinically relevant inflammatory settings, in comparison with celecoxib.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Pirimidinonas/farmacología , Quinazolinonas/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Estructura Molecular , Prostaglandina-E Sintasas , Pirimidinonas/síntesis química , Pirimidinonas/química , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA