Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chemistry ; : e202401874, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853148

RESUMEN

Cyclic dipeptides (CDPs) are crucial building blocks for a range of functional nanomaterials due to their simple chemical structure and high molecular stability. In this investigation, we synthesized a set of S-benzyl-L-cysteine-based CDPs (designated as P1-P6) and thoroughly examined their self-assembly behavior in a methanol-water solvent to elucidate the relationship between their structure and gelation properties. The hydrophobicity of the amino acids within the CDPs was gradually increased. The present study employed a comprehensive array of analytical techniques, including NMR, FT-IR, AFM, thioflavin-T, congo-red CD, X-ray crystallography, and biophysical calculations like Hirshfield Surface analysis and DFT analysis. These methods revealed that in addition to hydrogen bonding, the hydrophobic nature of the amino acid side chain significantly influences the propensity of CDPs to form hydrogels. Each CDP yielded distinct nanofibrillar networks rich in ß-sheet structures, showcasing unique morphological features. Moreover, we explored the practical application of these CDP-based hydrogels in water purification by utilizing them to remove harmful organic dyes from contaminated water. This application underscores the potential of CDPs in addressing environmental challenges, offering a promising avenue for the future development of these materials in water treatment technologies.

2.
J Phys Chem B ; 126(28): 5207-5218, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35819930

RESUMEN

Self-assembled structures derived from short peptides are a versatile class of organic building blocks which have shown great potential in a wide range of domains. In the current study, side-chain protected dityrosine based short peptide (TP) was synthesized, and its conformation accompanied by a self-assembly pattern was investigated through several spectroscopic studies and single crystal X-ray analysis. The single crystal X-ray analysis of TP confirmed that it exhibited a ß-sheet pattern which further self-assembled to form ß-sheet-promoted helical architectures by various noncovalent interactions. To the best of our knowledge, this is the first crystallographic report of a side-chain protected dityrosine based short peptide adopting ß-sheet-promoted helical structures. Morphological analysis of TP also revealed ß-sheet as well as helical conformations. NMR study suggested that both amide hydrogens of TP are involved in intermolecular hydrogen bonding. Moreover, CD spectroscopy established the self-assembly phenomenon of TP in the solution state by showing both corresponding ß-sheet and α-helix bands. Hirshfeld surface analysis and DFT study also concluded similar results. These kinds of small peptide units mimicking important protein secondary structures like helical assembly would be of pivotal significance as they may act as small peptidomimetics, mimicking the protein "Hotspot" area.


Asunto(s)
Dipéptidos , Péptidos , Enlace de Hidrógeno , Péptidos/química , Conformación Proteica en Hélice alfa , Tirosina/análogos & derivados
3.
J Pept Sci ; 28(8): e3403, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35001443

RESUMEN

Peptide-based low molecular weight supramolecular hydrogels hold promising aspects in various fields of application especially in biomaterial and biomedical sciences such as drug delivery, wound healing, tissue engineering, cell proliferation, and so on due to their extreme biocompatibility. Unlike linear peptides, cyclic peptides have more structural rigidity and tolerance to enzymatic degradation and high environmental stability which make them even better candidates for the above-said applications. Herein, a new small cyclic dipeptide (CDP) cyclo-(Leu-S-Bzl-Cys) (P1) consisting of L-leucine and S-benzyl protected L-cysteine was reported which formed a hydrogel at physiological conditions (at 37°C and pH = 7.46). The hydrogel formed from the cyclic dipeptide P1 showed very good tolerance towards environmental parameters such as pH and temperature and was seen to be stable for more than a year without any deformation. The hydrogel was thermoreversible and stable in the pH range 6-12. Mechanical strength of P1 hydrogel was measured by rheology experiments. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) images revealed that, in aqueous solvents, P1 self-assembled into a highly cross-linked nanofibrillar network which immobilized water molecules inside the cages and formed the hydrogel. The self-assembled cyclic dipeptide acquired the antiparallel ß-sheet secondary structure, which was evident from CD and Fourier transform infrared (FT-IR) studies. The ß-sheet arrangement and formation of amyloid fibrils were further established by ThT binding assay. Furthermore, P1 was able to form a hydrogel in the presence of the anticancer drug 5-fluorouracil (5FU), and sustainable release of the drug from the hydrogel was measured in vitro. The hydrogelator P1 showed almost no cytotoxicity towards the human colorectal cancer cell line HCT116 up to a considerably high concentration and showed potential application in sustainable drug delivery. The co-assembly of 5FU and P1 hydrogel exhibited much better anticancer activity towards the HCT116 cancer cell line than 5FU alone and decreased the IC50 dose of 5FU to a much lower value.


Asunto(s)
Antineoplásicos , Cisteína , Antineoplásicos/farmacología , Dipéptidos/farmacología , Fluorouracilo , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Péptidos/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
ACS Omega ; 4(11): 14411-14419, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31528794

RESUMEN

Low-molecular weight gelators (supramolecular, or simply molecular gels) are highly important molecular frameworks because of their potential application in drug delivery, catalysis, pollutant removal, sensing materials, and so forth. Herein, a small dipeptide composed of N-(tert-butoxycarbonyl)pentafluoro-l-phenylalanine and O-benzyl-l-tyrosine methyl ester was synthesized, and its gelation ability was investigated in different solvent systems. It was found that the dipeptide was unable to form gel with a single solvent, but a mixture of solvent systems was found to be suitable for the gelation of this dipeptide. Interestingly, water was found to be essential for gelation with the polar protic solvent, and long-chain hydrocarbon units such as, petroleum ether, kerosene, and diesel, were important for gelation with aromatic solvents. The structural insights of these gels were characterized by field-emission scanning electronic microscopy, atomic force microscopy, Fourier transform infrared analysis, and X-ray diffraction studies, and their mechanical strengths were characterized by rheological experiments. Both of the gels obtained from these two solvent systems were thermoreversible in nature, and these translucent gels had potential application for the treatment of waste water. The gel obtained from dipeptides with methanol-water was used to remove toxic dyes (crystal violet, Eriochrome Black T, and rhodamine B) from water. Furthermore, the gel obtained from dipeptide with assistance from toluene-petroleum ether was used as a phase-selective gelator for oil-spill recovery.

5.
Biochemistry ; 58(8): 1109-1119, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30694039

RESUMEN

In this study, we have designed and synthesized a new hybrid ligand (SCG) that can selectively detect cysteine in the free and protein-bound states within minutes at the subnanomolar level. Photoinduced electron transfer was responsible for the visible color change as well as a large increase in steady state fluorescence. This detection was validated by using multiple model protein systems with differing cysteine environments and spatial arrangements. SCG was able to monitor the early events of the folding/aggregation kinetics of α-synuclein, a protein involved in the pathology of Parkinson's disease. The early events consisted of conformational fluctuations between different forms of the protein and oligomer formation. SCG was found to be effective in detecting early isomers of α-syn in vitro and in live cell environments.


Asunto(s)
Proliferación Celular , Cisteína/química , Colorantes Fluorescentes/química , Neuroblastoma/patología , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/química , alfa-Sinucleína/química , Humanos , Neuroblastoma/metabolismo , Células Tumorales Cultivadas , alfa-Sinucleína/metabolismo
6.
ACS Omega ; 3(11): 16134-16142, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30556027

RESUMEN

A series of triazole-substituted quinazoline hybrid compounds were designed and synthesized for anticancer activity targeting epidermal growth factor receptor (EGFR) tyrosine kinase. Most of the compounds showed moderate to good antiproliferative activity against four cancer cell lines (HepG2, HCT116, MCF-7, and PC-3). Compound 5b showed good antiproliferative activity (IC50 = 20.71 µM) against MCF-7 cell lines. Molecular docking results showed that compound 5b formed hydrogen bond with Met 769 and Lys 721 and π-sulfur interaction with Met 742 of EGFR tyrosine kinase (PDB ID: 1M17). Compound 5b decreases the expression of EGFR and p-EGFR. It also induces apoptosis through reactive oxygen species generation, followed by the change in mitochondrial membrane potential.

7.
J Phys Chem B ; 121(26): 6367-6379, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28593765

RESUMEN

Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm-1 in the solid state. However, in the assembled state, the stretching band at 1695 cm-1 became broad and slightly shifted to ∼1689 cm-1. On the contrary, the band at 1641 cm-1 shifted to 1659 cm-1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross ß-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.


Asunto(s)
Cisteína/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Oligopéptidos/química , Oligopéptidos/síntesis química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
8.
Bioorg Med Chem ; 25(1): 202-212, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814949

RESUMEN

Neo-tanshinlactone (NTL) a natural product is known for its specificity and selectivity towards the breast cancer cells. By NTL D-ring modification approach, 13 new analogues were synthesized (1A-1M). Among them 1J showed the best anticancer activity in MCF-7 (ER+, PR+/-, HER2-), SKBR3 (ER-, PR-, HER2+) and MDA-MB-231 (ER-, PR-, HER2-) cells lines with IC50 value 11.98nM, 23.71nM, and 62.91nM respectively. 1J showed minor grove binding interaction with DNA at AT-rich region and induced DNA double strand breaks (DDSBs). This had triggered several key molecular events involving, activation of ATM, Chk2 and p53, reduction in mitochondrial potential (Δψm) leading to caspase-3 and PARP cleavage mediated apoptosis. These results along with other biochemical studies strongly suggest that novel NTL analogue 1J caused DNA cleavage mediated apoptosis in the breast cancer cells and this may serve as potential lead for future breast cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Furanos/farmacología , Pironas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Factor de Transcripción E2F1/metabolismo , Furanos/síntesis química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pironas/síntesis química , Proteína de Retinoblastoma/metabolismo , Relación Estructura-Actividad
9.
J Phys Chem A ; 120(49): 9829-9840, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973793

RESUMEN

The proline residue in a protein sequence generates constraints to its secondary structure as the associated torsion angles become a part of the heterocyclic ring. It becomes more significant when two consecutive proline residues link via amide linkage and produce additional configurational constraint to a protein's folding and stability. In the current manuscript we have illustrated conformation preference of a novel dipeptide, (R)-tert-butyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate. The dipeptide crystallized in the orthorhombic crystalline state and produced rod-shaped macroscopic material. The analysis of the crystal coordinates showed dihedral angles (φ, ψ) of the interlinked amide groups as (+72°, -147°) and the dihedral angles (φ, ψ) produced with the next carbonyl were (-68°, +151°), indicating polyglycine II (PGII) and polyproline II (PPII)-like helix states at the N- and C-terminals, respectively. These two states, PGII and PPII, are mirror image configurations and are expected to produce similar vibration bands from the associated carbonyl groups. However, the unique atomic arrangement in the molecule produces three carbonyl groups and one of them was very specific, being part of the main peptide linkage that connects both the pyrrolidine rings. The carbonyl group in the peptide bond exhibited a Raman vibration frequency at ∼1642 cm-1 and is considered a signatory Raman marker band for the peptide bond linking two heterochiral proline residues. The carbonyl group (t-Boc) at the N-terminal of the peptide showed a characteristic vibration at ∼1685 cm-1 and the C-terminal carbonyl group as a part of the ester showed a vibration signature at a significantly high frequency (1746 cm-1). Conformation analyses performed with density functional theory (DFT) calculations depicted that the dipeptide was stabilized in vacuum with dihedral angles (+72°, -154°) and (-72°, +151°) at the N- and C-terminals, respectively. Molecular dynamics (MD) simulation also showed that the peptide conformation having dihedral angles around (+75°, -150°) and (-75°, +150°) at the N- and C-terminals, respectively, was reasonably stable in water. Due to unique absence of the amide N-H, the peptide was ineffective in forming any intramolecular hydrogen bonding. MD investigation, however, revealed an intermolecular hydrogen bonding interaction with the water molecules, leading to its stability in aqueous solution. Metadynamics simulation analysis of the dipeptide in water also supported the PGII-PPII-like conformation at the N- and C-terminals, respectively, as the energetically stable conformation among the other possible combinations of conformations. The possible electronic transitions along with the HOMO-LUMO analysis further depicted the stability of the dipeptide in water and their possible absorption pattern. Time-dependent density functional theory (TDDFT) analysis showed strong negative rotatory strength of the dipeptide around 210 nm in water and acetonitrile, and it could be the source of experimentally observed high-amplitude negative absorption in the circular dichroism (CD) spectra around 200-203 nm. The very weak positive band (signature) in the region at ∼228 nm in CD spectra could also be correlated to the positive rotatory strength at 228 nm observed in ECD. To test the effect of such a dipeptide on a living cell, an MTT assay was performed and the result indicated no cytotoxic effect toward human hepatocellular carcinoma Hep G2 cancer cell lines.


Asunto(s)
Dipéptidos/química , Prolina/química , Teoría Cuántica , Conformación Proteica , Espectrometría Raman
10.
Springerplus ; 4: 708, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618097

RESUMEN

Kidney diseases are complicated and can be fatal. Dialysis and transplantation are the only survival solutions to the patients suffering from kidney failures. Both hemodialysis and peritoneal dialysis are risky, due to the possibility of infection and these are expensive and time consuming. The development of simple and reliable technique for the clearance of creatinine and urea from the body is an important part of biotechnology. We have synthesized an iron nanoparticle (INP) and studied its binding with creatinine and urea. The DLS, TEM, AFM, FT-IR and Powder-XRD studies demonstrate strong binding of creatinine and urea to the nanoparticles. This finding may be helpful if it is used in the dialysis technologies. The proposed method may substantially decrease dialysis time and improve its quality in terms of urea and creatinine clearances.

11.
J Chem Biol ; 8(3): 73-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26101549

RESUMEN

A heterocyclic compound 1-propenyl-1,3-dihydro-benzimidazol-2-one was synthesized by a palladium-catalyzed rearrangement reaction. Anticancer activities were confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against Neura 2a (neuroblastoma cell), HEK 293 (kidney cancer) and MCF-7 (breast cancer) cell lines at low micromolar range. Furthermore, clear images from phase-contrast and fluorescence microscopes and confocal images unambiguously confirm the cancer cell death. The single X-ray crystal structure of the compound unambiguously proves the structure of the benzimidazolone compound.

12.
PLoS One ; 8(11): e78842, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244372

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure till today. Aberrant activation of cell cycle regulatory proteins is implicated in neurodegenerative diseases including AD. We and others have shown that Cyclin dependent kinase 4 (Cdk4) is activated in AD brain and is required for neuron death. In this study, we tested the efficiency of commercially available Cdk4 specific inhibitors as well as a small library of synthetic molecule inhibitors targeting Cdk4 as neuroprotective agents in cellular models of neuron death. We found that several of these inhibitors significantly protected neuronal cells against death induced by nerve growth factor (NGF) deprivation and oligomeric beta amyloid (Aß) that are implicated in AD. These neuroprotective agents inhibit specifically Cdk4 kinase activity, loss of mitochondrial integrity, induction of pro-apoptotic protein Bim and caspase3 activation in response to NGF deprivation. The efficacies of commercial and synthesized inhibitors are comparable. The synthesized molecules are either phenanthrene based or naphthalene based and they are synthesized by using Pschorr reaction and Buchwald coupling respectively as one of the key steps. A number of molecules of both kinds block neurodegeneration effectively. Therefore, we propose that Cdk4 inhibition would be a therapeutic choice for ameliorating neurodegeneration in AD and these synthetic Cdk4 inhibitors could lead to development of effective drugs for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/química , Células PC12 , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas/metabolismo , Ratas
13.
Chem Biol Drug Des ; 82(4): 401-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23672315

RESUMEN

Cancer continues to be one of the biggest threats to the human civilization because there is no cure of it. Small heterocyclic molecule with low molecular weight and novel structural feature is therapeutically highly demanding. These molecules have the capability to disrupt signaling pathways leading to anticancer activities. Therefore, the search for new anticancer agents continues to draw attention to the research community. In this study, a small triazolo-benzoxazepine scaffolds was synthesized using a one-pot four-step synthetic methodology involving click reaction. Small libraries of 12 compounds were successfully synthesized and screened them against different cancer cell lines. Low micromolar anticancer activity was recorded using MTT assay, and further confirmation of cell death was obtained by phase contrast, fluorescent, and confocal images.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Oxazepinas/química , Triazoles/química , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier
14.
Chem Cent J ; 7(1): 91, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23705891

RESUMEN

BACKGROUND: Cancer is a severe threat to the human society. In the scientific community worldwide cancer remains a big challenge as there are no remedies as of now. Cancer is quite complicated as it involves multiple signalling pathways and it may be caused by genetic disorders. Various natural products and synthetic molecules have been designed to prevent cell proliferation. Peptide-based anticancer drugs, however, are not explored properly. Though peptides have their inherent proteolytic instability, they could act as anticancer agents. RESULTS: In this present communication a suitably protected cystine based dipeptide and its deprotected form have been synthesized. Potent anticancer activities were confirmed by MTT assay (a laboratory test and a standard colorimetric assay, which measures changes in colour, for measuring cellular proliferation and phase contrast images. The IC50 value, a measure of the effectiveness of a compound in inhibiting biological or biochemical function, of these compounds ranges in the sub-micromolar level. The binding interactions with serum albumins (HSA and BSA) were performed with all these molecules and all of them show very strong binding at sub-micromolar concentration. CONCLUSIONS: This study suggested that the cystine-based dipeptides were potential anticancer agents. These peptides also showed very good binding with major carrier proteins of blood, the serum albumins. We are currently working on determining the detailed mechanism of anticancer activity of these molecules.

15.
J Am Chem Soc ; 130(11): 3633-44, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18298117

RESUMEN

Palmerolide A is a recently disclosed marine natural product possessing striking biological properties, including potent and selective activity against the melanoma cancer cell line UACC-62. The total syntheses of five palmerolide A stereoisomers, including the originally proposed (1) and the revised [ent-(19-epi-20-epi-1)] structures, have been accomplished. The highly convergent and flexible strategy developed for these syntheses involved the construction of key building blocks 2, 19-epi-2, 20-epi-2, ent-2, 3, ent-3, 4, and ent-4, and their assembly and elaboration to the target compounds. For the union of the building blocks, the Stille coupling reaction, Yamaguchi esterification, Horner-Wadsworth-Emmons olefination, and ring-closing metathesis reaction were employed, the latter being crucial for the stereoselective formation of the macrocycle of the palmerolide structure. The Horner-Wadsworth-Emmons olefination and the Yamaguchi lactonization were also investigated and found successful as a means to construct the palmerolide macrocycle. The syntheses were completed by attachment of the enamide moiety through a copper-catalyzed coupling process.


Asunto(s)
Macrólidos/química , Macrólidos/síntesis química , Conformación Molecular , Estereoisomerismo
16.
J Org Chem ; 67(22): 7852-7, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12398513

RESUMEN

Acetates derived from the adducts of the Baylis-Hillman reaction can be reacted in a regioselective manner with amines in the presence of palladium(0) catalyst to afford alpha-dehydro-beta-amino esters (2 and 3) in good yields. The regioselectivity of the reaction can be controlled by temperature and reaction medium leading to the synthesis of regioisomers 2 or 3. The alpha-dehydro-beta-amino acid 3 is a turn inducer, and the dipeptides 6 derived from it show the presence of an eight-membered intramolecular hydrogen bond. Also, cobalt(II) chloride catalyzes the cleavage of epoxy peptides with alpha-dehydro-beta-amino acid derivative 3b to afford the corresponding dipeptide derivatives 8, which exhibit an intramolecular hydrogen bond and thus mimic a beta-turn. This intramolecular hydrogen bonding preorganizes the corresponding diallylated peptide 8c for cyclization via ring-closing metathesis to afford the cyclic peptide 9 as a constrained mimic of a beta-turn.


Asunto(s)
Acetatos/química , Aminas/química , Ésteres/química , Ésteres/síntesis química , Paladio/química , Péptidos/química , Péptidos/síntesis química , Aminación , Aminoácidos/química , Catálisis , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA