Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 8(8): e71794, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24013357

RESUMEN

Matrix metalloproteinase-2 (MMP-2) is a key intra- and extra-cellular protease which contributes to several oxidative stress related pathologies. A molecular understanding of 72 kDa MMP-2 activity, directly mediated by S-glutathiolation of its cysteine residues in the presence of peroxynitrite (ONOO(-)) and by phosphorylation of its serine and threonine residues, is essential to develop new generation inhibitors of intracellular MMP-2. Within its propeptide and collagen binding domains there is an interesting juxtaposition of predicted phosphorylation sites with nearby cysteine residues which form disulfide bonds. However, the combined effect of these two post-translational modifications on MMP-2 activity has not been studied. The activity of human recombinant 72 kDa MMP-2 (hrMMP-2) following in vitro treatments was measured by troponin I proteolysis assay and a kinetic activity assay using a fluorogenic peptide substrate. ONOO(-) treatment in the presence of 30 µM glutathione resulted in concentration-dependent changes in MMP-2 activity, with 0.1-1 µM increasing up to twofold and 100 µM attenuating its activity. Dephosphorylation of MMP-2 with alkaline phosphatase markedly increased its activity by sevenfold, either with or without ONOO(-). Dephosphorylation of MMP-2 also affected the conformational structure of the enzyme as revealed by circular dichroism studies, suggesting an increase in the proportion of α-helices and a decrease in ß-strands compared to the phosphorylated form of MMP-2. These results suggest that ONOO(-) activation (at low µM) and inactivation (at high µM) of 72 kDa MMP-2, in the presence or absence of glutathione, is also influenced by its phosphorylation status. These insights into the role of post-translational modifications in the structure and activity of 72 kDa MMP-2 will aid in the development of inhibitors specifically targeting intracellular MMP-2.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Oxidantes/farmacología , Ácido Peroxinitroso/farmacología , Procesamiento Proteico-Postraduccional , Dicroismo Circular , Glutatión/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/química , Fosforilación , Estructura Secundaria de Proteína , Proteolisis , Troponina I/química
2.
Nature ; 501(7465): 102-6, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23903654

RESUMEN

Prion infections cause lethal neurodegeneration. This process requires the cellular prion protein (PrP(C); ref. 1), which contains a globular domain hinged to a long amino-proximal flexible tail. Here we describe rapid neurotoxicity in mice and cerebellar organotypic cultured slices exposed to ligands targeting the α1 and α3 helices of the PrP(C) globular domain. Ligands included seven distinct monoclonal antibodies, monovalent Fab1 fragments and recombinant single-chain variable fragment miniantibodies. Similar to prion infections, the toxicity of globular domain ligands required neuronal PrP(C), was exacerbated by PrP(C) overexpression, was associated with calpain activation and was antagonized by calpain inhibitors. Neurodegeneration was accompanied by a burst of reactive oxygen species, and was suppressed by antioxidants. Furthermore, genetic ablation of the superoxide-producing enzyme NOX2 (also known as CYBB) protected mice from globular domain ligand toxicity. We also found that neurotoxicity was prevented by deletions of the octapeptide repeats within the flexible tail. These deletions did not appreciably compromise globular domain antibody binding, suggesting that the flexible tail is required to transmit toxic signals that originate from the globular domain and trigger oxidative stress and calpain activation. Supporting this view, various octapeptide ligands were not only innocuous to both cerebellar organotypic cultured slices and mice, but also prevented the toxicity of globular domain ligands while not interfering with their binding. We conclude that PrP(C) consists of two functionally distinct modules, with the globular domain and the flexible tail exerting regulatory and executive functions, respectively. Octapeptide ligands also prolonged the life of mice expressing the toxic PrP(C) mutant, PrP(Δ94-134), indicating that the flexible tail mediates toxicity in two distinct PrP(C)-related conditions. Flexible tail-mediated toxicity may conceivably play a role in further prion pathologies, such as familial Creutzfeldt-Jakob disease in humans bearing supernumerary octapeptides.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/toxicidad , Docilidad , Priones/química , Priones/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/toxicidad , Sitios de Unión de Anticuerpos , Calpaína/metabolismo , Cerebelo , Síndrome de Creutzfeldt-Jakob/metabolismo , Reactivos de Enlaces Cruzados , Mapeo Epitopo , Femenino , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/toxicidad , Técnicas In Vitro , Ligandos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/inmunología , Priones/genética , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Secuencia/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/toxicidad
3.
J Biol Chem ; 283(32): 22316-24, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18550518

RESUMEN

Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Catálisis , Unión Proteica , Estructura Terciaria de Proteína , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA