Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Transl Oncol ; 22: 101464, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660849

RESUMEN

BACKGROUND: Caveolin-1 (CAV1) is associated with cholesterol-rich membrane raft domains and is a master regulator of cell signaling and membrane transport. Here, we investigated CAV1's role in cellular compartments of breast cancer in relation to signaling pathways, clinicopathological features, and clinical outcomes. METHODS: CAV1 levels were evaluated with immunohistochemistry in cytoplasm of invasive tumor cells and stromal cells in tumor tissue microarrays from a cohort of 1018 breast cancer patients (inclusion 2002-2012, Sweden). Cytoplasmic and stromal CAV1 were categorized as positive/negative and strong/not strong, respectively. CAV1 expression in relation to clinical outcomes was assessed with Cox regression. Investigations into CAV1 functional pathways was conducted in the STRING, GOBO, and TCGA databases. RESULTS: CAV1 expression was associated with non-luminal subtypes, cell cycle control, inflammation, epithelial-mesenchymal transition, and the IGF/Insulin system. Generally, CAV1 was not associated with recurrence risk. Stromal CAV1's impact on recurrence risk was modified by BMI ≥25 kg/m2 (Pinteraction = 0.002), waist ≥80 cm (Pinteraction = 0.005), and invasive tumor size (pT2/3/4) (Pinteraction = 0.028). In low-risk patients only, strong stromal CAV1 significantly increased recurrence risk (HRsadj ≥1.61). In all patients, positive cytoplasmic CAV1 conferred >2-fold risk for contralateral disease HRadj 2.63 (95% CI 1.36-5.10). Strong stromal CAV1 conferred nearly 2-fold risk for locoregional recurrence HRadj 1.88 (95% CI 1.09-3.24). CONCLUSIONS: CAV1's prognostic impact depended on its localization, anthropometric, and tumor factors. Stromal CAV1 predicted high recurrence risk in a group of supposedly 'low-risk' patients. Cytoplasmic CAV1 predicted metachronous contralateral disease. If confirmed, CAV1 could be used as treatment target and for risk-stratification.

2.
RSC Chem Biol ; 3(4): 456-467, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35441144

RESUMEN

Epigenetic regulation is a dynamic and reversible process that controls gene expression. Abnormal function results in human diseases such as cancer, thus the enzymes that establish epigenetic marks, such as histone methyltransferases (HMTs), are potentially therapeutic targets. Noteworthily, HMTs form multiprotein complexes that in concert regulate gene expression. To probe epigenetic protein complexes regulation in cells, we developed a reliable chemical biology high-content imaging strategy to screen compound libraries simultaneously on multiple histone marks inside cells. By this approach, we identified that compound 4, a published CARM1 inhibitor, inhibits both histone mark H3R2me2a, regulated also by CARM1, and H3K79me2, regulated only by DOT1L, pointing out a crosstalk between CARM1 and DOT1L. Based on this interaction, we combined compound 4 and DOT1L inhibitor EPZ-5676 resulting in a stronger inhibition of cell proliferation and increase in apoptosis, indicating that our approach identifies possible effective synergistic drug combinations.

3.
Future Med Chem ; 14(8): 557-570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332778

RESUMEN

Background: Post-translational modifications of histones constitute a dynamic process impacting gene expression. A well-studied modification is lysine methylation. Among the lysine histone methyltransferases, DOT1L is implicated in various diseases, making it a very interesting target for drug discovery. DOT1L has two substrates, the SAM cofactor that gives the methyl group and the lysine H3K79 substrate. Results: Using molecular docking, the authors explored new bisubstrate analogs to enlarge the chemical landscape of DOT1L inhibitors. The authors showed that quinazoline can successfully replace the adenine in the design of bisubstrate inhibitors of DOT1L, showing similar activity compared with the adenine derivative but with diminished cytotoxicity. Conclusion: The docking model is validated together with the use of quinazoline in the design of bisubstrate inhibitors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia , Adenina/farmacología , Antídotos , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia/metabolismo , Simulación del Acoplamiento Molecular , Quinazolinas/farmacología
5.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500733

RESUMEN

Histone methyltransferase DOT1L catalyzes mono-, di- and trimethylation of histone 3 at lysine residue 79 (H3K79) and hypermethylation of H3K79 has been linked to the development of acute leukemias characterized by the MLL (mixed-lineage leukemia) rearrangements (MLLr cells). The inhibition of H3K79 methylation inhibits MLLr cells proliferation, and an inhibitor specific for DOT1L, pinometostat, was in clinical trials (Phase Ib/II). However, the compound showed poor pharmacological properties. Thus, there is a need to find new potent inhibitors of DOT1L for the treatment of rearranged leukemias. Here we present the design, synthesis, and biological evaluation of a small molecule that inhibits in the nM level the enzymatic activity of hDOT1L, H3K79 methylation in MLLr cells with comparable potency to pinometostat, associated with improved metabolic stability and a characteristic cytostatic effect.


Asunto(s)
Citostáticos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Metilación/efectos de los fármacos , Estructura Molecular
6.
Mol Cancer Res ; 18(4): 644-656, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31900313

RESUMEN

The antibody-drug conjugate trastuzumab-emtansine (T-DM1) offers an additional treatment option for patients with HER2-amplified tumors. However, primary and acquired resistance is a limiting factor in a significant subset of patients. Hypoxia, a hallmark of cancer, regulates the trafficking of several receptor proteins with potential implications for tumor targeting. Here, we have investigated how hypoxic conditions may regulate T-DM1 treatment efficacy in breast cancer. The therapeutic effect of T-DM1 and its metabolites was evaluated in conjunction with biochemical, flow cytometry, and high-resolution imaging studies to elucidate the functional and mechanistic aspects of hypoxic regulation. HER2 and caveolin-1 expression was investigated in a well-annotated breast cancer cohort. We find that hypoxia fosters relative resistance to T-DM1 in HER2+ cells (SKBR3 and BT474). This effect was not a result of deregulated HER2 expression or resistance to emtansine and its metabolites. Instead, we show that hypoxia-induced translocation of caveolin-1 from cytoplasmic vesicles to the plasma membrane contributes to deficient trastuzumab internalization and T-DM1 chemosensitivity. Caveolin-1 depletion mimicked the hypoxic situation, indicating that vesicular caveolin-1 is indispensable for trastuzumab uptake and T-DM1 cytotoxicity. In vitro studies suggested that HER2 and caveolin-1 are not coregulated, which was supported by IHC analysis in patient tumors. We find that phosphorylation-deficient caveolin-1 inhibits trastuzumab internalization and T-DM1 cytotoxicity, suggesting a specific role for caveolin-1 phosphorylation in HER2 trafficking. IMPLICATIONS: Together, our data for the first time identify hypoxic regulation of caveolin-1 as a resistance mechanism to T-DM1 with potential implications for individualized treatment of breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Caveolina 1/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Maitansina/uso terapéutico , Trastuzumab/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/patología , Femenino , Humanos , Maitansina/farmacología , Transfección , Trastuzumab/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA