Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmacol Ther ; 244: 108373, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894028

RESUMEN

Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.


Asunto(s)
Encefalopatías , Ferroptosis , Humanos , Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido , Encefalopatías/tratamiento farmacológico
2.
Pharmaceutics ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38258067

RESUMEN

Antimitotic compounds, targeting key spindle assembly checkpoint (SAC) components (e.g., MPS1, Aurora kinase B, PLK1, KLP1, CENPE), are potential alternatives to microtubule-targeting antimitotic agents (e.g., paclitaxel) to circumvent resistance and side effects associated with their use. They can be classified into mitotic blockers, causing SAC-induced mitotic arrest, or mitotic drivers, pushing cells through aberrant mitosis by overriding SAC. These drugs, although advancing to clinical trials, exhibit unsatisfactory cancer treatment outcomes as monotherapy, probably due to variable cell fate responses driven by cyclin B degradation and apoptosis signal accumulation networks. We investigated the impact of inhibiting anti-apoptotic signals with the BH3-mimetic navitoclax in lung cancer cells treated with the selective CENPE inhibitor GSK923295 (mitotic blocker) or the MPS1 inhibitor BAY1217389 (mitotic driver). Our aim was to steer treated cancer cells towards cell death. BH3-mimetics, in combination with both mitotic blockers and drivers, induced substantial cell death, mainly through apoptosis, in 2D and 3D cultures. Crucially, these synergistic concentrations were less toxic to non-tumor cells. This highlights the significance of combining BH3-mimetics with antimitotics, either blockers or drivers, which have reached the clinical trial phase, to enhance their effectiveness.

3.
Arch Toxicol ; 96(12): 3279-3290, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36104498

RESUMEN

3,4-Methylenedioximethamphetamine (MDMA; "ecstasy") is a psychotropic drug with well-known neurotoxic effects mediated by hitherto not fully understood mechanisms. The Na+- and K+-activated adenosine 5'-triphosphatase (Na+/K+ ATPase), by maintaining the ion gradient across the cell membrane, regulates neuronal excitability. Thus, a perturbation of its function strongly impacts cell homeostasis, ultimately leading to neuronal dysfunction and death. Nevertheless, whether MDMA affects the Na+/K+ ATPase remains unknown. In this study, we used synaptosomes obtained from whole mouse brain to test the effects of MDMA, three of its major metabolites [α-methyldopamine, N-methyl-α-methyldopamine and 5-(glutathion-S-yl)-α-methyldopamine], serotonin (5-HT), dopamine, 3,4-dihydroxy-L-phenylalanine (L-Dopa) and 3,4-dihydroxyphenylacetic acid (DOPAC) on the Na+/K+ ATPase function. A concentration-dependent increase of Na+/K+ ATPase activity was observed in synaptosomes exposed to the tested compounds (concentrations ranging from 0.0625 to 200 µM). These effects were independent of protein kinases A and C activities. Nevertheless, a rescue of the compounds' effects was observed in synaptosomes pre-incubated with the antioxidant N-acetylcysteine (1 mM), suggesting a role for reactive species-regulated pathways on the Na+/K+ ATPase effects. In agreement with this hypothesis, a similar increase in the pump activity was found in synaptosomes exposed to the chemical generator of superoxide radicals, phenazine methosulfate (1-250 µM). This study demonstrates the ability of MDMA metabolites, monoamine neurotransmitters, L-Dopa and DOPAC to alter the Na+/K+ ATPase function. This could represent a yet unknown mechanism of action of MDMA and its metabolites in the brain.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Animales , Ratones , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Sinaptosomas/metabolismo , Serotonina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido 3,4-Dihidroxifenilacético/farmacología , Dopamina/metabolismo , Acetilcisteína/farmacología , Antioxidantes/farmacología , Levodopa/metabolismo , Levodopa/farmacología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Superóxidos/metabolismo , Metosulfato de Metilfenazonio/metabolismo , Metosulfato de Metilfenazonio/farmacología , Encéfalo , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Adenosina/metabolismo , Proteínas Quinasas/metabolismo
4.
Pharmacol Ther ; 213: 107554, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32320731

RESUMEN

ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Animales , Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/farmacocinética , Fármacos del Sistema Nervioso Central/farmacología , Resistencia a Medicamentos , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico
5.
Arch Toxicol ; 89(10): 1695-725, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25743372

RESUMEN

Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines' research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle's enzymes functioning, inhibition of mitochondrial electron transport chain's complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines' neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.


Asunto(s)
Trastornos Relacionados con Anfetaminas/complicaciones , Mitocondrias/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Anfetaminas/administración & dosificación , Anfetaminas/farmacocinética , Anfetaminas/toxicidad , Animales , Barrera Hematoencefálica/metabolismo , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/farmacocinética , Estimulantes del Sistema Nervioso Central/toxicidad , Transporte de Electrón/efectos de los fármacos , Humanos , Síndromes de Neurotoxicidad/fisiopatología
6.
Toxicol Lett ; 229(1): 178-89, 2014 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-24968061

RESUMEN

Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate. Our aim was to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(4-methoxyphenyl) piperazine (MeOPP), and 1-(3,4-methylenedioxybenzyl) piperazine (MDBP) in the H9c2 rat cardiac cell line. Complete cytotoxicity curves were obtained at a 0-20 mM concentration range after 24 h incubations with each drug. The EC50 values (µM) were 343.9, 59.6, 570.1, and 702.5 for BZP, TFMPP, MeOPP, and MDBP, respectively. There was no change in oxidative stress markers. However, a decrease in total GSH content was noted for MDBP, probably due to metabolic conjugation reactions. All drugs caused significant decreases in intracellular ATP, accompanied by increased intracellular calcium levels and a decrease in mitochondrial membrane potential that seems to involve the mitochondrial permeability transition pore. The cell death mode revealed early apoptotic cells and high number of cells undergoing secondary necrosis. Among the tested drugs, TFMPP seems to be the most potent cytotoxic compound. Overall, piperazine designer drugs are potentially cardiotoxic and support concerns on risks associated with the intake of these drugs.


Asunto(s)
Drogas de Diseño/toxicidad , Mitocondrias Cardíacas/patología , Mioblastos Cardíacos/patología , Piperazinas/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes , Metabolismo Energético/efectos de los fármacos , Citometría de Flujo , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Necrosis/patología , Rojo Neutro , Ratas , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sales de Tetrazolio , Tiazoles
7.
Toxicol Sci ; 139(2): 407-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24595818

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10µM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/metabolismo , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Neuronas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , GTP Fosfohidrolasas/metabolismo , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Ratas
8.
Arch Toxicol ; 88(2): 455-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24101030

RESUMEN

The neurotoxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) is thought to involve hepatic metabolism, though its real contribution is not completely understood. Most in vitro neurotoxicity studies concern isolated exposures of MDMA or its metabolites, at high concentrations, not considering their mixture, as expected in vivo. Therefore, our postulate is that combined deleterious effects of MDMA and its metabolites, at low micromolar concentrations that may be attained into the brain, may elicit neurotoxicity. Using human SH-SY5Y differentiated cells as dopaminergic neuronal model, we studied the neurotoxicity of MDMA and its MDMA metabolites α-methyldopamine and N-methyl-α-methyldopamine and their correspondent glutathione and N-acetylcysteine monoconjugates, under isolated exposure and as a mixture, at normothermic or hyperthermic conditions. The results showed that the mixture of MDMA and its metabolites was toxic to SH-SY5Y differentiated cells, an effect potentiated by hyperthermia and prevented by N-acetylcysteine. As a mixture, MDMA and its metabolites presented a different toxicity profile, compared to each compound alone, even at equimolar concentrations. Caspase 3 activation, increased reactive oxygen species production, and intracellular Ca(2+) raises were implicated in the toxic effect. The mixture increased intracellular glutathione levels by increasing its de novo synthesis. In conclusion, this study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at low micromolar concentrations, which represents a more realistic approach of the in vivo scenario, elicited toxicity to human SH-SY5Y differentiated cells, thus constituting a new insight into the context of MDMA-related neurotoxicity.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Neuronas/efectos de los fármacos , Acetilcisteína/farmacología , Calcio/metabolismo , Caspasa 3/metabolismo , Línea Celular/efectos de los fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/toxicidad , Dopamina/metabolismo , Dopamina/farmacocinética , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , N-Metil-3,4-metilenodioxianfetamina/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Especies Reactivas de Oxígeno/metabolismo
9.
Arch Toxicol ; 88(2): 515-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24177245

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fiebre/inducido químicamente , N-Metil-3,4-metilenodioxianfetamina/metabolismo , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Neuronas/efectos de los fármacos , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidad , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidad , Fiebre/metabolismo , Glutatión/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , N-Metil-3,4-metilenodioxianfetamina/farmacocinética , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Temperatura
10.
Br J Pharmacol ; 165(4b): 1017-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21506960

RESUMEN

BACKGROUND AND PURPOSE: 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH: Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS: 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H(2) O(2 ) production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H(2) O(2) generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds' pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS: MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy.


Asunto(s)
3,4-Metilenodioxianfetamina/farmacología , Desoxiepinefrina/análogos & derivados , Glutatión/análogos & derivados , Alucinógenos/farmacología , Peróxido de Hidrógeno/metabolismo , Sinaptosomas/efectos de los fármacos , Ácido 3,4-Dihidroxifenilacético/farmacología , Animales , Antioxidantes/farmacología , Encéfalo/citología , Desoxiepinefrina/farmacología , Dopamina/farmacología , Glutatión/metabolismo , Glutatión/farmacología , Levodopa/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Serotonina/farmacología , Sinaptosomas/fisiología
11.
Rev. imagem ; 22(1): 49-51, jan.-mar. 2000. ilus
Artículo en Portugués | LILACS | ID: lil-259948

RESUMEN

Os autores relatam um caso de pneumonia eosinofílica crônica em um paciente de 59 anos de idade, do sexo masculino, com febre e tosse seca há 15 dias. Na história pregressa havia tabagismo e asma de início há 12 anos. A radiografia do tórax mostrou opacidades homogêneas periféricas nos terços superiores. A tomografia computadorizada do tórax demonstrava consolidaçöes periféricas com broncogramas aéreos na periferia dos lobos superiores dos pulmöes. O paciente foi submetido a biópsia "a céu aberto", com diagnóstico histológico de processo intersticial difuso com predomínio de eosinófilos. O paciente foi tratado com corticosteróides, observando-se normalizaçäo dos exames radiológicos após 20 dias


Asunto(s)
Humanos , Masculino , Persona de Mediana Edad , Enfermedades Pulmonares Intersticiales , Eosinofilia Pulmonar , Asma , Enfermedad Crónica , Eosinófilos , Prednisona/uso terapéutico , Eosinofilia Pulmonar/tratamiento farmacológico , Radiografía Torácica , Fumar , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA