Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cancer Ther ; 23(7): 973-994, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507737

RESUMEN

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.


Asunto(s)
Proliferación Celular , Glucólisis , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Ratones , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 410-423, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38164114

RESUMEN

Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea-associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)-infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea-associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV-infected adults with/without Cryptosporidium infection using nonlinear mixed-effects modeling. Covariates describing cryptosporidiosis-associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two-compartment model with lag time and first-order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h-1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Infecciones por VIH , Adulto , Humanos , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Diarrea/tratamiento farmacológico , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Ensayos Clínicos Fase II como Asunto
3.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37461469

RESUMEN

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

4.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920244

RESUMEN

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Criptosporidiosis , Cryptosporidium parvum , Animales , Bovinos , Ratones , Ratas , Criptosporidiosis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Oocistos
5.
Sci Rep ; 11(1): 21664, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737367

RESUMEN

Balamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a 'brain-eating' disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.


Asunto(s)
Balamuthia mandrillaris/genética , Diseño de Fármacos/métodos , Trofozoítos/genética , Acanthamoeba/genética , Amebiasis/tratamiento farmacológico , Amoeba/genética , Balamuthia mandrillaris/efectos de los fármacos , Balamuthia mandrillaris/crecimiento & desarrollo , Secuencia de Bases , Encéfalo/patología , Descubrimiento de Drogas/métodos , Encefalitis/patología , Expresión Génica/genética , Naegleria fowleri/genética , Transcriptoma/genética , Trofozoítos/efectos de los fármacos
6.
PLoS One ; 16(3): e0241738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760815

RESUMEN

Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain's frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen's high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.


Asunto(s)
Descubrimiento de Drogas , Naegleria fowleri/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/química , Adenosilhomocisteinasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación de Dinámica Molecular , Naegleria fowleri/genética , Fosfoglicerato Mutasa/antagonistas & inhibidores , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Estructura Cuaternaria de Proteína , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
7.
Int J Antimicrob Agents ; 56(3): 106099, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32707170

RESUMEN

Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 µM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 µM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 µM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Naftalenos/toxicidad , Neospora/efectos de los fármacos , Piperidinas/toxicidad , Pirazoles/toxicidad , Pirimidinas/toxicidad , Quinolinas/toxicidad , Toxoplasma/efectos de los fármacos , Animales , Línea Celular , Coccidiosis/tratamiento farmacológico , Femenino , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Naftalenos/farmacocinética , Naftalenos/farmacología , Neospora/crecimiento & desarrollo , Piperidinas/farmacocinética , Piperidinas/farmacología , Embarazo , Complicaciones del Embarazo/inducido químicamente , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Pirazoles/farmacocinética , Pirazoles/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Quinolinas/farmacocinética , Quinolinas/farmacología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Pez Cebra/embriología
8.
Artículo en Inglés | MEDLINE | ID: mdl-30959327

RESUMEN

Cystoisosporosis is a leading diarrheal disease in suckling piglets. With the confirmation of resistance against the only available drug toltrazuril, there is a substantial need for novel therapeutics to combat the infection and its negative effects on animal health. In closely related apicomplexan species, bumped kinase inhibitors (BKIs) targeting calcium-dependent protein kinase 1 (CDPK1) were shown to be effective in inhibiting host-cell invasion and parasite growth. Therefore, the gene coding for Cystoisospora suis CDPK1 (CsCDPK1) was identified and cloned to investigate activity and thermal stabilization of the recombinant CsCDPK1 enzyme by BKI 1369. In this comprehensive study, the efficacy, safety and pharmacokinetics of BKI 1369 in piglets experimentally infected with Cystoisospora suis (toltrazuril-sensitive, Wien-I and toltrazuril-resistant, Holland-I strains) were determined in vivo and in vitro using an established animal infection model and cell culture, respectively. BKI 1369 inhibited merozoite proliferation in intestinal porcine epithelial cells-1 (IPEC-1) by at least 50% at a concentration of 40 nM, and proliferation was almost completely inhibited (>95%) at 200 nM. Nonetheless, exposure of infected cultures to 200 nM BKI 1369 for five days did not induce structural alterations in surviving merozoites as confirmed by transmission electron microscopy. Five-day treatment with BKI 1369 (10 mg/kg BW twice a day) effectively suppressed oocyst excretion and diarrhea and improved body weight gains in treated piglets without obvious side effects for both toltrazuril-sensitive, Wien-I and resistant, Holland-I C. suis strains. The plasma concentration of BKI 1369 in piglets increased to 11.7 µM during treatment, suggesting constant drug accumulation and exposure of parasites to the drug. Therefore, oral applications of BKI 1369 could potentially be a therapeutic alternative against porcine cystoisosporosis. For use in pigs, future studies on BKI 1369 should be directed towards ease of drug handling and minimizing treatment frequencies.


Asunto(s)
Antiprotozoarios/administración & dosificación , Coccidiosis/veterinaria , Inhibidores de Proteínas Quinasas/administración & dosificación , Sarcocystidae/efectos de los fármacos , Enfermedades de los Porcinos/parasitología , Animales , Antiprotozoarios/química , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Femenino , Masculino , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Sarcocystidae/enzimología , Sarcocystidae/crecimiento & desarrollo , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico
9.
PLoS Negl Trop Dis ; 12(8): e0006673, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080847

RESUMEN

There is need for a more efficient cell-based assay amenable to high-throughput drug screening against Giardia lamblia. Here, we report the development of a screening method utilizing G. lamblia engineered to express red-shifted firefly luciferase. Parasite growth and replication were quantified using D-luciferin as a substrate in a bioluminescent read-out plateform. This assay was validated for reproducibility and reliability against the Medicines for Malaria Venture (MMV) Pathogen Box compounds. For G. lamblia, forty-three compounds showed ≥ 75% inhibition of parasite growth in the initial screen (16 µM), with fifteen showing ≥ 95% inhibition. The Pathogen Box was also screened against Nanoluciferase expressing (Nluc) C. parvum, yielding 85 compounds with ≥ 75% parasite growth inhibition at 10 µM, with six showing ≥ 95% inhibition. A representative set of seven compounds with activity against both parasites were further analyzed to determine the effective concentration that causes 50% growth inhibition (EC50) and cytotoxicity against mammalian HepG2 cells. Four of the seven compounds were previously known to be effective in treating either Giardia or Cryptosporidium. The remaining three shared no obvious chemical similarity with any previously characterized anti-parasite diarrheal drugs and offer new medicinal chemistry opportunities for therapeutic development. These results suggest that the bioluminescent assays are suitable for large-scale screening of chemical libraries against both C. parvum and G. lamblia.


Asunto(s)
Antiprotozoarios/farmacología , Cryptosporidium parvum/efectos de los fármacos , Giardia lamblia/efectos de los fármacos , Antiprotozoarios/efectos adversos , Antiprotozoarios/química , Bioensayo , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Relación Estructura-Actividad
10.
J Antimicrob Chemother ; 72(8): 2334-2341, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28486633

RESUMEN

Objectives: Establishment of a mouse model for congenital toxoplasmosis based on oral infection with oocysts from Toxoplasma gondii ME49 and its application for investigating chemotherapeutic options against congenital toxoplasmosis. Methods: CD1 mice were mated, orally infected with 5, 25, 100, 500 or 2000 oocysts and monitored for clinical signs and survival of dams and pups until 4 weeks post partum . The parasite burden in infected mice was quantified by real-time PCR in lungs, brains and, in the case of surviving pups, also in eyes. Seroconversion was assessed by ELISA. T. gondii cysts in brain were identified by immunofluorescence. In a second experiment, pregnant CD1 mice challenged with 20 oocysts/mouse were treated with buparvaquone or the calcium-dependent protein kinase 1 inhibitor bumped kinase inhibitor (BKI)-1294 and the outcome of infection was analysed. Results: T. gondii DNA was detected in the brain of all infected animals, irrespective of the infection dose. Seroconversion occurred at 3 weeks post-infection. Most pups born to infected dams died within 1 week post partum , but a small fraction survived until the end of the experiment. T. gondii DNA was detected in the brain of all survivors and half of them exhibited ocular infection. Chemotherapy with both compounds led to dramatically increased numbers of surviving pups and reduced cerebral infection. Most efficient were treatments with BKI-1294, with 100% survivors and only 7% brain-positive pups. Conclusions: BKI-1294 and buparvaquone exert excellent activities against transplacental transmission in pregnant mice.


Asunto(s)
Antiprotozoarios/administración & dosificación , Modelos Animales de Enfermedad , Transmisión Vertical de Enfermedad Infecciosa , Naftalenos/administración & dosificación , Naftoquinonas/administración & dosificación , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Toxoplasmosis Animal/transmisión , Toxoplasmosis Congénita/prevención & control , Animales , Femenino , Masculino , Ratones , Resultado del Tratamiento
11.
J Med Chem ; 59(13): 6531-46, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27309760

RESUMEN

New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.


Asunto(s)
Antiprotozoarios/farmacología , Sistema Nervioso Central/efectos de los fármacos , Diseño de Fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Administración Oral , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Haplorrinos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Toxoplasma/enzimología , Toxoplasmosis/metabolismo
12.
Transfusion ; 45(9): 1459-63, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16131378

RESUMEN

BACKGROUND: Leishmania spp. are protozoans that cause skin and visceral diseases. Leishmania are obligate intracellular parasites of mononuclear phagocytes and have been documented to be transmitted by blood transfusion. STUDY DESIGN AND METHODS: This study examines whether Leishmania can be inactivated in human platelet (PLT) concentrates by a photochemical treatment process that is applicable to blood bank use. Human PLT concentrates were contaminated with Leishmania mexicana metacyclic promastigotes or mouse-derived Leishmania major amastigotes and were exposed to long-wavelength ultraviolet (UV) A light (320-400 nm) plus the psoralen amotosalen HCl. RESULTS: Neither treatment with amotosalen nor UVA alone had an effect on Leishmania viability; however, treatment with 150 micromol per L amotosalen plus 3 J per cm(2) UVA inactivated both metacyclic promastigotes and amastigotes to undetectable levels, more than a 10,000-fold reduction in viability. CONCLUSIONS: This study demonstrates the effectiveness of photochemical treatment to inactivate Leishmania in PLT concentrates intended for transfusion. Both metacylic promastigotes, which represent the infectious form from the sand fly vector, and amastigotes, which represent the form that grows in mononuclear phagocytes, were extremely susceptible to photochemical inactivation by this process. Thus, the photochemical treatment of PLT concentrates inactivates both forms of Leishmania that would be expected to circulate in blood products collected from infected donors.


Asunto(s)
Leishmania major/efectos de la radiación , Leishmania mexicana/efectos de la radiación , Leishmaniasis Cutánea/prevención & control , Transfusión de Plaquetas/efectos adversos , Rayos Ultravioleta , Animales , Almacenamiento de Sangre/métodos , Plaquetas/parasitología , Conservación de la Sangre/métodos , Furocumarinas , Humanos , Leishmania major/efectos de los fármacos , Leishmania major/crecimiento & desarrollo , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/transmisión , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA