Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Magn Reson ; 281: 246-252, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28651245

RESUMEN

High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80cm-gap) 48.7mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52MHz resonance frequency over the torso of a tumor-bearing mouse every 2s. Hyperpolarized 13C NMR signals with linewidths of ∼3Hz (corresponding to ∼6ppm) were recorded in vitro (2mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7mT and at 4.7T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7mT compared to that at 4.7T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7mT compared to those observed in high-field (≥3T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.


Asunto(s)
Campos Electromagnéticos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Femenino , Inyecciones Intravenosas , Ratones , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Cola (estructura animal)/irrigación sanguínea , Venas
2.
J Phys Chem C Nanomater Interfaces ; 121(8): 4481-4487, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28286597

RESUMEN

Hyperpolarized (HP) propane produced by the parahydrogen-induced polarization (PHIP) technique has been recently introduced as a promising contrast agent for functional lung magnetic resonance (MR) imaging. However, its short lifetime due to a spin-lattice relaxation time T1 of less than 1 s in the gas phase is a significant translational challenge for its potential biomedical applications. The previously demonstrated approach for extending the lifetime of the HP propane state through long-lived spin states allows the HP propane lifetime to be increased by a factor of ∼3. Here, we demonstrate that a remarkable increase in the propane hyperpolarization decay time at high magnetic field (7.1 T) can be achieved by its dissolution in deuterated organic solvents (acetone-d6 or methanol-d4). The approximate values of the HP decay time for propane dissolved in acetone-d6 are 35.1 and 28.6 s for the CH2 group and the CH3 group, respectively (similar values were obtained for propane dissolved in methanol-d4), which are ∼50 times larger than the gaseous propane T1 value. Furthermore, we show that it is possible to retrieve HP propane from solution to the gas phase with the preservation of hyperpolarization.

3.
Tomography ; 2(1): 49-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27478870

RESUMEN

1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions.

4.
J Am Chem Soc ; 138(26): 8080-3, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27321159

RESUMEN

Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing.


Asunto(s)
Antibacterianos/química , Metronidazol/química , Sondas Moleculares/química , Hipoxia Tumoral , Antibacterianos/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Metronidazol/metabolismo , Sondas Moleculares/metabolismo
5.
Bioconjug Chem ; 27(4): 878-82, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26999571

RESUMEN

Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-(15)N with an excellent isotopic purity (98%) and good yield (55%). (15)N nuclear spin label in nicotinamide-1-(15)N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20,000-fold for nicotinamide-1-(15)N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc. 2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-(15)N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of (15)N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies.


Asunto(s)
Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Niacinamida/síntesis química , Isótopos de Nitrógeno/química , Marcadores de Spin
6.
Chemistry ; 20(45): 14629-32, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25263795

RESUMEN

Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS =(4.7±0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications.


Asunto(s)
Hidrógeno/química , Imagen por Resonancia Magnética/métodos , Gases/química
7.
Chemistry ; 20(37): 11636-9, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24961814

RESUMEN

Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D (1) H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 µm(3) ) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.


Asunto(s)
Hidrógeno/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Rodio/química , Titanio/química , Catálisis , Gases , Espectroscopía de Resonancia Magnética , Protones
8.
Anal Chem ; 86(13): 6192-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24918975

RESUMEN

Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.


Asunto(s)
Complejos de Coordinación/química , Gases/química , Hidrógeno/química , Rodio/química , Diseño de Equipo , Hidrogenación , Espectroscopía de Resonancia Magnética/instrumentación , Norbornanos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA