Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100709, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154691

RESUMEN

Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of basic leucine zipper and W2 domain-containing protein 2 (BZW2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondria contact sites and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondria contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.


Asunto(s)
Calcio , Neoplasias , Humanos , Calcio/metabolismo , Membranas Asociadas a Mitocondrias , Proteómica , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Neoplasias/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37584589

RESUMEN

Mitochondria are dynamic organelles regulated by fission and fusion processes. The fusion of membranes requires elaborative coordination of proteins and lipids and is particularly crucial for the function and quality control of mitochondria. Phosphatidic acid (PA) on the mitochondrial outer membrane generated by PLD6 facilitates the fusion of mitochondria. However, how PA promotes mitochondrial fusion remains unclear. Here, we show that a mitochondrial outer membrane protein, NME3, is required for PLD6-induced mitochondrial tethering or clustering. NME3 is enriched at the contact interface of two closely positioned mitochondria depending on PLD6, and NME3 binds directly to PA-exposed lipid packing defects via its N-terminal amphipathic helix. The PA binding function and hexamerization confer NME3 mitochondrial tethering activity. Importantly, nutrient starvation enhances the enrichment efficiency of NME3 at the mitochondrial contact interface, and the tethering ability of NME3 contributes to fusion efficiency. Together, our findings demonstrate NME3 as a tethering protein promoting selective fusion between PLD6-remodeled mitochondria for quality control.


Asunto(s)
Mitocondrias , Nucleósido Difosfato Quinasas NM23 , Ácidos Fosfatidicos , Fosfolipasa D , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
3.
Acc Chem Res ; 55(21): 3088-3098, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278840

RESUMEN

Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.


Asunto(s)
Ácidos Fosfatidicos , Fosfolipasa D , Optogenética , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Transducción de Señal
4.
J Biol Chem ; 298(4): 101810, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35276134

RESUMEN

The simple structure of phosphatidic acid (PA) belies its complex biological functions as both a key phospholipid biosynthetic intermediate and a potent signaling molecule. In the latter role, PA controls processes including vesicle trafficking, actin dynamics, cell growth, and migration. However, experimental methods to decode the pleiotropy of PA are sorely lacking. Because PA metabolism and trafficking are rapid, approaches to accurately visualize and manipulate its levels require high spatiotemporal precision. Here, we describe recent efforts to create a suite of chemical tools that enable imaging and perturbation of PA signaling. First, we describe techniques to visualize PA production by phospholipase D (PLD) enzymes, which are major producers of PA, called Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation (IMPACT). IMPACT harnesses the ability of endogenous PLD enzymes to accept bioorthogonally tagged alcohols in transphosphatidylation reactions to generate functionalized reporter lipids that are subsequently fluorescently tagged via click chemistry. Second, we describe two light-controlled approaches for precisely manipulating PA signaling. Optogenetic PLDs use light-mediated heterodimerization to recruit a bacterial PLD to desired organelle membranes, and photoswitchable PA analogs contain azobenzene photoswitches in their acyl tails, enabling molecular shape and bioactivity to be controlled by light. We highlight select applications of these tools for studying GPCR-Gq signaling, discovering regulators of PLD signaling, tracking intracellular lipid transport pathways, and elucidating new oncogenic signaling roles for PA. We envision that these chemical tools hold promise for revealing many new insights into lipid signaling pathways.


Asunto(s)
Química Clic , Optogenética , Ácidos Fosfatidicos , Transducción de Señal , Alcoholes , Química Clic/métodos , Optogenética/métodos , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Transducción de Señal/fisiología
5.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569608

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.


Asunto(s)
Lipoilación , Fosfatidilinositoles , Membrana Celular/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo
6.
Bioorg Med Chem ; 40: 116190, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965837

RESUMEN

Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.


Asunto(s)
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinasa/química , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Membrana Celular/química , Humanos , Estructura Molecular , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/química
7.
Cancer Res ; 81(8): 2029-2043, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33574086

RESUMEN

Despite recent promising advances in targeted therapies and immunotherapies, patients with melanoma incur substantial mortality. In particular, inhibitors targeting BRAF-mutant melanoma can lead to resistance, and no targeted therapies exist for NRAS-mutant melanoma, motivating the search for additional therapeutic targets and vulnerable pathways. Here we identify a regulator of Wnt/ß-catenin signaling, PLEKHA4, as a factor required for melanoma proliferation and survival. PLEKHA4 knockdown in vitro decreased Dishevelled levels, attenuated Wnt/ß-catenin signaling, and blocked progression through the G1-S cell-cycle transition. In mouse xenograft and allograft models, inducible PLEKHA4 knockdown attenuated tumor growth in BRAF- and NRAS-mutant melanomas and exhibited an additive effect with the clinically used inhibitor encorafenib in a BRAF-mutant model. As an E3 ubiquitin ligase regulator with both lipid- and protein-binding partners, PLEKHA4 presents several opportunities for targeting with small molecules. Our work identifies PLEKHA4 as a promising drug target for melanoma and clarifies a controversial role for Wnt/ß-catenin signaling in the control of melanoma proliferation. SIGNIFICANCE: This study establishes that melanoma cell proliferation requires the protein PLEKHA4 to promote pathologic Wnt signaling for proliferation, highlighting PLEKHA4 inhibition as a new avenue for the development of targeted therapies.


Asunto(s)
Proliferación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Vía de Señalización Wnt/fisiología , Animales , Carbamatos/farmacología , Línea Celular Tumoral , Proteínas Dishevelled/metabolismo , Resistencia a Antineoplásicos , Fase G1/fisiología , GTP Fosfohidrolasas/genética , Xenoinjertos , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/mortalidad , Proteínas de la Membrana/genética , Ratones , Terapia Molecular Dirigida , Mutación , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , ARN Interferente Pequeño/metabolismo , Fase S/fisiología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Sulfonamidas/farmacología , Ensayo de Tumor de Célula Madre
8.
Cell Chem Biol ; 27(9): 1114-1116, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946757

RESUMEN

In this issue of Cell Chemical Biology, Hong et al. (2020) use in situ chemoenzymatic labeling to discover that fucosylation of the Wnt co-receptor LRP6 induces its endocytosis and downregulates Wnt/ß-catenin signaling. Their findings reveal a glycosylation-based mechanism for regulating Wnt signaling that could be targeted in cancer.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Vía de Señalización Wnt , Endocitosis , Glicosilación , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , beta Catenina/metabolismo
9.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31999306

RESUMEN

Phosphatidic acid (PA) is both a central phospholipid biosynthetic intermediate and a multifunctional lipid second messenger produced at several discrete subcellular locations. Organelle-specific PA pools are believed to play distinct physiological roles, but tools with high spatiotemporal control are lacking for unraveling these pleiotropic functions. Here, we present an approach to precisely generate PA on demand on specific organelle membranes. We exploited a microbial phospholipase D (PLD), which produces PA by phosphatidylcholine hydrolysis, and the CRY2-CIBN light-mediated heterodimerization system to create an optogenetic PLD (optoPLD). Directed evolution of PLD using yeast membrane display and IMPACT, a chemoenzymatic method for visualizing cellular PLD activity, yielded a panel of optoPLDs whose range of catalytic activities enables mimicry of endogenous, physiological PLD signaling. Finally, we applied optoPLD to elucidate that plasma membrane, but not intracellular, pools of PA can attenuate the oncogenic Hippo signaling pathway. OptoPLD represents a powerful and precise approach for revealing spatiotemporally defined physiological functions of PA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Membrana Celular/enzimología , Optogenética , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipasa D/metabolismo , Ingeniería de Proteínas , Sistemas de Mensajero Secundario , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/genética , Células HEK293 , Vía de Señalización Hippo , Humanos , Hidrólisis , Membranas Intracelulares/enzimología , Fosfolipasa D/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad por Sustrato , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
10.
Proc Natl Acad Sci U S A ; 114(52): 13720-13725, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229838

RESUMEN

Plasma membrane (PM) phosphoinositides play essential roles in cell physiology, serving as both markers of membrane identity and signaling molecules central to the cell's interaction with its environment. The first step in PM phosphoinositide synthesis is the conversion of phosphatidylinositol (PI) to PI4P, the precursor of PI(4,5)P2 and PI(3,4,5)P3 This conversion is catalyzed by the PI4KIIIα complex, comprising a lipid kinase, PI4KIIIα, and two regulatory subunits, TTC7 and FAM126. We here report the structure of this complex at 3.6-Å resolution, determined by cryo-electron microscopy. The proteins form an obligate ∼700-kDa superassembly with a broad surface suitable for membrane interaction, toward which the kinase active sites are oriented. The structural complexity of the assembly highlights PI4P synthesis as a major regulatory junction in PM phosphoinositide homeostasis. Our studies provide a framework for further exploring the mechanisms underlying PM phosphoinositide regulation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Proteínas/química , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas/metabolismo
11.
J Am Chem Soc ; 139(40): 14302-14314, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28948792

RESUMEN

Seven rhenium(I) complexes of the general formula fac-[Re(CO)3(NN)(OH2)]+ where NN = 2,2'-bipyridine (8), 4,4'-dimethyl-2,2'-bipyridine (9), 4,4'-dimethoxy-2,2'-bipyridine (10), dimethyl 2,2'-bipyridine-4,4'-dicarboxylate (11), 1,10-phenanthroline (12), 2,9-dimethyl-1,10-phenanthroline (13), or 4,7-diphenyl-1,10-phenanthroline (14), were synthesized and characterized by 1H NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography. With the exception of 11, all complexes exhibited 50% growth inhibitory concentration (IC50) values that were less than 20 µM in HeLa cells, indicating that these compounds represent a new potential class of anticancer agents. Complexes 9, 10, and 13 were as effective in cisplatin-resistant cells as wild-type cells, signifying that they circumvent cisplatin resistance. The mechanism of action of the most potent complex, 13, was explored further by leveraging its intrinsic luminescence properties to determine its intracellular localization. These studies indicated that 13 induces cytoplasmic vacuolization that is lysosomal in nature. Additional in vitro assays indicated that 13 induces cell death without causing an increase in intracellular reactive oxygen species or depolarization of the mitochondrial membrane potential. Further studies revealed that the mode of cell death does not fall into one of the canonical categories such as apoptosis, necrosis, paraptosis, and autophagy, suggesting that a novel mode of action may be operative for this class of rhenium compounds. The in vivo biodistribution and metabolism of complex 13 and its 99mTc analogue 13* were also evaluated in naïve mice. Complexes 13 and 13* exhibited comparable biodistribution profiles with both hepatic and renal excretion. High-performance liquid chromatography inductively coupled plasma mass-spectrometry (HPLC-ICP-MS) analysis of mouse blood plasma and urine postadministration showed considerable metabolic stability of 13, rendering this potent complex suitable for in vivo applications. These studies have shown the biological properties of this class of compounds and demonstrated their potential as promising theranostic anticancer agents that can circumvent cisplatin resistance.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Neoplasias/tratamiento farmacológico , Renio/química , Renio/farmacología , Animales , Antineoplásicos/farmacocinética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacocinética , Cristalografía por Rayos X , Células HeLa , Humanos , Ratones Endogámicos C57BL , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Renio/farmacocinética , Distribución Tisular
12.
Nat Cell Biol ; 18(1): 132-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26571211

RESUMEN

Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.


Asunto(s)
Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Animales , Humanos , Ratones , Mutación/genética , Fosfatos de Fosfatidilinositol/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
13.
J Cell Biol ; 199(6): 1003-16, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23229899

RESUMEN

Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P2) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P2 because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P2 was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity.


Asunto(s)
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Animales , Electroporación , Femenino , Fibroblastos/metabolismo , Vectores Genéticos , Células HeLa , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regulación hacia Arriba
15.
J Proteome Res ; 8(7): 3702-11, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19402736

RESUMEN

A general method is described to sequester peptides containing azides from complex peptide mixtures, aimed at facilitating mass spectrometric analysis to study different aspects of proteome dynamics. The enrichment method is based on covalent capture of azide-containing peptides by the azide-reactive cyclooctyne (ARCO) resin and is demonstrated for two different applications. Enrichment of peptides derived from cytochrome c treated with the azide-containing cross-linker bis(succinimidyl)-3-azidomethyl glutarate (BAMG) shows several cross-link containing peptides. Sequestration of peptides derived from an Escherichia coli proteome, pulse labeled with the bio-orthogonal amino acid azidohomoalanine as substitute for methionine, allows identification of numerous newly synthesized proteins. Furthermore, the method is found to be very specific, as after enrichment over 87% of all peptides contain (modified) azidohomoalanine.


Asunto(s)
Azidas/química , Péptidos/química , Alanina/análogos & derivados , Alanina/química , Secuencia de Aminoácidos , Cationes , Cromatografía por Intercambio Iónico/métodos , Reactivos de Enlaces Cruzados/farmacología , Citocromos c/química , Glutaratos/química , Cinética , Espectrometría de Masas/métodos , Metionina/química , Datos de Secuencia Molecular , Proteoma , Proteómica/métodos
16.
ACS Chem Biol ; 1(10): 644-8, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17175580

RESUMEN

Detection of metabolites and post-translational modifications can be achieved using the azide as a bioorthogonal chemical reporter. Once introduced into target biomolecules, either metabolically or through chemical modification, the azide can be tagged with probes using one of three highly selective reactions: the Staudinger ligation, the Cu(I)-catalyzed azide-alkyne cycloaddition, or the strain-promoted [3 + 2] cycloaddition. Here, we compared these chemistries in the context of various biological applications, including labeling of biomolecules in complex lysates and on live cell surfaces. The Cu(I)-catalyzed reaction was found to be most efficient for detecting azides in protein samples but was not compatible with live cells due to the toxicity of the reagents. Both the Staudinger ligation and the strain-promoted [3 + 2] cycloaddition using optimized cyclooctynes were effective for tagging azides on live cells. The best reagent for this application was dependent upon the specific structure of the azide. These results provide a guide for biologists in choosing a suitable ligation chemistry.


Asunto(s)
Azidas/química , Química Farmacéutica/métodos , Western Blotting , Catálisis , Cobre/química , Diseño de Fármacos , Escherichia coli/metabolismo , Cinética , Modelos Químicos , Péptidos/química , Unión Proteica , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA