Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gut Microbes ; 11(6): 1531-1546, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32573321

RESUMEN

Although dysbiosis in the gut microbiota is known to be involved in several inflammatory diseases, whether any specific bacterial taxa control host response to inflammatory stimuli is still elusive. Here, we hypothesized that dysbiotic indigenous taxa could be involved in modulating host response to inflammatory triggers. To test this hypothesis, we conducted experiments in germ-free (GF) mice and in mice colonized with dysbiotic taxa identified in conventional (CV) mice subjected to chemotherapy-induced mucositis. First, we report that the absence of microbiota decreased inflammation and damage in the small intestine after administration of the chemotherapeutic agent 5-fluorouracil (5-FU). Also, 5-FU induced a shift in CV microbiota resulting in higher amounts of Enterobacteriaceae, including E. coli, in feces and small intestine and tissue damage. Prevention of Enterobacteriaceae outgrowth by treating mice with ciprofloxacin resulted in diminished 5-FU-induced tissue damage, indicating that this bacterial group is necessary for 5-FU-induced inflammatory response. In addition, monocolonization of germ-free (GF) mice with E. coli led to reversal of the protective phenotype during 5-FU chemotherapy. E. coli monocolonization decreased the basal plasma corticosterone levels and blockade of glucocorticoid receptor in GF mice restored inflammation upon 5-FU treatment. In contrast, treatment of CV mice with ciprofloxacin, that presented reduction of Enterobacteriaceae and E. coli content, induced an increase in corticosterone levels. Altogether, these findings demonstrate that Enterobacteriaceae outgrowth during dysbiosis impacts inflammation and tissue injury in the small intestine. Importantly, indigenous Enterobacteriaceae modulates host production of the anti-inflammatory steroid corticosterone and, consequently, controls inflammatory responsiveness in mice.


Asunto(s)
Corticosterona/metabolismo , Disbiosis/microbiología , Enterobacteriaceae/crecimiento & desarrollo , Animales , Antineoplásicos/efectos adversos , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Corticosterona/inmunología , Disbiosis/etiología , Disbiosis/inmunología , Disbiosis/metabolismo , Enterobacteriaceae/genética , Fluorouracilo/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Ratones
2.
Pharmacol Rep ; 69(4): 691-695, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28550800

RESUMEN

BACKGROUND: Phthalimide analogs have been shown to exhibit anti-inflammatory, analgesic and immunomodulatory activities in different preclinical assays. This study aimed to investigate the potential role of 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO) in a murine model of antigen-induced articular inflammation. METHODS: Articular inflammation was induced by intra-articular injection of methylated bovine serum albumin (mBSA) in the knee joint of immunized male C57BL/6J mice. The animals were pre-treated with PTD-OH or PTD-NO (500mg/kg, per os, - 1h). Nociceptive threshold was measured using an electronic von Frey apparatus. The total number of leukocytes in the synovial cavity was determined. Concentrations of tumor necrosis factor (TNF)-α and CXCL-1 and myeloperoxidase (MPO) activity were determined in periarticular tissue. RESULTS: Both PTD-OH and PTD-NO inhibited at similar extent the mechanical allodynia, neutrophil recruitment to the synovial cavity and periarticular tissue and TNF-α and CXCL-1 production induced by intra-articular challenge with mBSA in immunized mice. CONCLUSIONS: PTD-OH and PTD-NO exhibit a marked activity in a murine model of antigen-induced articular inflammation in immunized animals. These results reinforce the interest in the investigation of phthalimide analogs devoid of the glutarimide ring as candidates to analgesic and anti-inflammatory drugs.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/prevención & control , Neutrófilos/efectos de los fármacos , Ftalimidas/farmacología , Analgésicos/farmacología , Animales , Citocinas/genética , Artropatías/inducido químicamente , Artropatías/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ftalimidas/química , Albúmina Sérica Bovina/inmunología
3.
Eur J Immunol ; 46(1): 204-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26449770

RESUMEN

Gout manifests as recurrent episodes of acute joint inflammation and pain due to the deposition of monosodium urate (MSU) crystals within the affected tissue in a process dependent on NLRP3 inflammasome activation. The synthesis, activation, and release of IL-1ß are crucial for MSU-induced inflammation. The current study evaluated the mechanism by which TNF-α contributed to MSU-induced inflammation. Male C57BL/6J or transgenic mice were used in this study and inflammation was induced by the injection of MSU crystals into the joint. TNF-α was markedly increased in the joint after the injection of MSU. There was inhibition in the infiltration of neutrophils, production of CXCL1 and IL-1ß, and decreased hypernociception in mice deficient for TNF-α or its receptors. Pharmacological blockade of TNF-α with Etanercept or pentoxyfylline produced similar results. Mechanistically, TNF-α blockade resulted in lower amounts of IL-1ß protein and pro-IL-1ß mRNA transcripts in joints. Gene-modified mice that express only transmembrane TNF-α had an inflammatory response similar to that of WT mice and blockade of soluble TNF-α (XPro™1595) did not decrease MSU-induced inflammation. In conclusion, TNF-α drives expression of pro-IL-1ß mRNA and IL-1ß protein in experimental gout and that its transmembrane form is sufficient to trigger MSU-induced inflammation in mice.


Asunto(s)
Gota/inmunología , Hiperalgesia/etiología , Inflamación/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Gota/complicaciones , Gota/metabolismo , Inflamación/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Articulación de la Rodilla , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Física , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Úrico/efectos adversos , Ácido Úrico/inmunología
4.
Eur J Pharmacol ; 756: 59-66, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25794846

RESUMEN

The activities of 2-phthalimidethyl nitrate (PTD-NO) and 2-phthalimidethanol (PTD-OH) were recently demonstrated in models of pain and inflammation. We expanded our investigation by evaluating their activities in models of nociceptive and inflammatory pain and inflammatory edema, the preliminary pharmacokinetic parameter for PTD-NO and the role of opioid and cannabinoid pathways in the activity of analogs. Per os (p.o.) administration of PTD-NO or PTD-OH, 1h before intraplantar injection of formaldehyde, inhibited both phases of the nociceptive response (500 and 750 mg/kg) and paw edema (125, 250, 500 and 750 mg/kg). After p.o. administration of PTD-NO, peak plasma concentrations of PTD-NO and PTD-OH were found 0.92 and 1.13 h, respectively. The plasma concentrations of PTD-NO were higher than those of PTD-OH. Intraperitoneal (i.p.) administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists (4 or 8 mg/kg, -30 min) or opioid antagonist naltrexone (5 or 10mg/kg, -30 min) did not affect the antinociceptive activities of the analogs. AM251 (8 mg/kg, i.p., -30 min) attenuated the antiedematogenic activity of both analogs, while naltrexone (10mg/kg, i.p., -30 min) only attenuated the antiedematogenic activity of PTD-NO. The antiedematogenic activities of both analogs were not affected by the CB2 cannabinoid antagonist AM630 (4 or 8 mg/kg, i.p., -30 min). Concluding, we expanded the knowledge on the activities of PTD-NO and PTD-OH by showing that these phthalimide analogs also exhibit marked activity in models of nociceptive and inflammatory pain and inflammatory edema. Opioid and cannabinoid mechanisms partially mediate the anti-inflammatory, but not the antinociceptive activity.


Asunto(s)
Analgésicos/farmacología , Edema/inducido químicamente , Edema/fisiopatología , Formaldehído/efectos adversos , Nocicepción/efectos de los fármacos , Ftalimidas/farmacología , Analgésicos/uso terapéutico , Animales , Edema/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Ftalimidas/uso terapéutico , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/antagonistas & inhibidores
5.
Pharmacol Biochem Behav ; 122: 291-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24780502

RESUMEN

The reintroduction of thalidomide in the pharmacotherapy greatly stimulated the interest in the synthesis and pharmacological evaluation of phthalimide analogs with new and improved activities and also greater safety. In the present study, we evaluated the activities of two phthalimide analogs devoid of the glutarimide ring, namely 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO), in experimental models of inflammatory pain and edema in male C57BL/6J mice. Intraplantar (i.pl.) injection of carrageenan (300 µg) induced mechanical allodynia and this response was inhibited by previous per os (p.o.) administration of PTD-OH and PTD-NO (750 mg/kg) and also by thalidomide (500 or 750 mg/kg). The edema induced by carrageenan was also inhibited by previous p.o. administration of PTD-OH (500 and 750 mg/kg) and PTD-NO (125, 250, 500 or 750 mg/kg), but not by thalidomide. Carrageenan increased tumor necrosis factor (TNF)-α and CXCL1 concentrations and also the number of neutrophils in the paw tissue. Previous p.o. administration of PTD-NO (500 mg/kg) reduced all the parameters, while PTD-OH (500 mg/kg) reduced only the accumulation of neutrophils. Thalidomide, on the other hand, was devoid of effect on these biochemical parameters. Plasma concentrations of nitrite were increased after p.o. administration of the phthalimide analog coupled to a NO donor, PTD-NO (500 mg/kg), but not after administration of PTD-OH or thalidomide. In conclusion, our results show that small molecules, structurally much simpler than thalidomide or many of its analogs under investigation, exhibit similar activities in experimental models of pain and inflammation. Finally, as there is evidence that the glutarimide moiety contributes to the teratogenic effect of many thalidomide analogs, our results indicate that phthalimide analogs devoid of this functional group could represent a new class of analgesic and anti-inflammatory candidates with potential greater safety.


Asunto(s)
Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Ácidos Cetoglutáricos/química , Dimensión del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Ftalimidas/uso terapéutico , Animales , Carragenina/toxicidad , Edema/inducido químicamente , Edema/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/metabolismo , Dimensión del Dolor/métodos , Ftalimidas/química
6.
Pharmacol Biochem Behav ; 106: 85-90, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23537730

RESUMEN

Nicorandil (2-nicotinamide ethyl nitrate), an antianginal drug characterized by the coupling of nicotinamide with a nitric oxide (NO) donor, activates guanylyl cyclase and opens ATP-dependent K(+) channels. In the present study, we investigated the effects induced by per os (p.o.) administration of nicorandil (12.5, 25 or 50 mg/kg) or equimolar doses (corresponding to the highest dose of nicorandil) of N-(2-hydroxyethyl) nicotinamide (NHN), its main metabolite, or nicotinamide in the model of nociceptive response induced by formaldehyde in mice. Nicorandil, but not NHN or nicotinamide, inhibited the second phase of the nociceptive response. This activity was observed when nicorandil was administered between 30 and 120 min before the injection of formaldehyde. Ipsilateral intraplantar injection of nicorandil (125, 250 or 500 µg/paw) did not inhibit the nociceptive response. After p.o. administration of nicorandil (50 mg/kg), peak plasma concentrations of this compound and NHN were observed 0.63 and 4 h later, respectively. Nicotinamide concentrations were not increased after administration of nicorandil. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 or 2 mg/kg), a guanylyl cyclase inhibitor, partially attenuated the antinociceptive activity of nicorandil. However, this activity was not changed by glibenclamide (30 or 60 mg/kg), an inhibitor of ATP-dependent K(+) channels. In conclusion, we demonstrated the antinociceptive activity of nicorandil in a model of pain that exhibits both a nociceptive and an inflammatory profile. This activity is not mediated by nicotinamide or NHN. The coupling of an NO-donor to nicotinamide results in a compound with an increased potency. The NO-cGMP pathway, but not ATP-dependent K(+) channels, partially mediates the antinociceptive activity of nicorandil.


Asunto(s)
Analgésicos/farmacología , Modelos Animales de Enfermedad , Formaldehído/toxicidad , Nicorandil/farmacología , Dolor/prevención & control , Analgésicos/sangre , Animales , Relación Dosis-Respuesta a Droga , Gliburida/farmacología , Masculino , Ratones , Nicorandil/sangre , Oxadiazoles/farmacología , Dolor/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA