Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1112: 199-221, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637700

RESUMEN

In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/patología , ADN Helicasas/genética , ADN Polimerasa I/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Embrión de Pollo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos
4.
Neurochem Res ; 37(6): 1245-55, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22488330

RESUMEN

Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid are ubiquitous in the central nervous system. At least six DSL-glycosyltransferase activities (GLTs Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid (or NAc-Neuraminic acid) are ubiquitous in the central nervous system. At least six GSL-glycosyltransferase activities (GLTs) of Basu-Roseman pathway catalyzing the biosynthesis of these gangliosides have been characterized in developing chicken brains. Most of these glyco-genes are expressed in the early stages (7-17 days) of brain development and lowered in the adult stage, but the cause of reduction of enzymatic activities of these GLTs in the adult stages is not known. In order to study glyco-gene regulation we used four clonal metastatic cancer cells of colon and breast cancer tissue origin (Colo-205, SKBR-3, MDA-468, and MCF-3). The glyco-genes for synthesis of SA-LeX and SA-LeA (which contain N-acetylglucosamine, sialic acid and fucose) in these cells were modulated differently at different phases (between 2 and 48 h) of apoptotic inductions. L-PPMP, D-PDMP (inhibitor of glucosylceramide biosynthesis), Betulinic Acid (a triterpinoid isolated from bark of certain trees and used for cancer treatment in China), Tamoxifen a drug in use in the west for treatment of early stages of the disease in breast cancer patients), and cis-platin (an inhibitor of DNA biosynthesis used for testicular cancer patients) were used for induction of apoptosis in the above-mentioned cell lines. Within 2-6 h, transcriptional modulation of a number of glyco-genes was observed by DNA-micro-array (containing over 300 glyco genes attached to the glass cover slips) studies. Under long incubation time (24-48 h) almost all of the glyco-genes were downregulated. The cause of these glyco-gene regulations during apoptotic induction in metastatic carcinoma cells is unknown and needs future investigations for further explanations. These apoptotic agents could be employed as a new generation of anti-cancer drugs after properly delivered to the patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/embriología , Gangliósidos/biosíntesis , Glicosiltransferasas/genética , Antígenos del Grupo Sanguíneo de Lewis/biosíntesis , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Embrión de Pollo , Neoplasias del Colon/tratamiento farmacológico , Femenino , Humanos , Morfolinas/farmacología , Metástasis de la Neoplasia/tratamiento farmacológico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Esfingolípidos/farmacología
6.
Glycoconj J ; 26(6): 647-61, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19184418

RESUMEN

Functions of glycosphingolipids on the eukaryotic cell membranes during the onset of oncogenic processes and cell death are not well understood. Inhibitors of glycosphingolipid biosynthesis were recently found to trigger apoptosis in many carcinoma including breast cancer SKBR-3, MCF-7, and MDA-468 cells through either intrinsic or extrinsic apoptotic pathways as we previously reported. These anti-cancer inhibitors could increase ceramide concentration by blocking functions of glycolipid glycosyltransferases (GLTs). In this study, using a novel fluorescent dye (ASK-0) revealed the damage of cell organelle membranes by an inhibitor of glucosylceramide biosynthesis (L-PPMP). A highly drug- and cell-dependent regulation of MAPKs was also found by cis-platin and L-PPMP when inducing apoptosis in SKBR-3, MCF-7, and MDA-468 cells. A dose and time-dependent regulation of GLTs were investigated by enzymatic assay and DNA microarray analyses. These GLTs are involved in biosynthesis of Le(X) and sialosyl-Le(X) (neolactosyl-ceramide series) such as GalT-4 (UDP-Gal: LcOse3cer beta-galactosyltransferase, GalT-5 (UDP-Gal: nLcOse4Cer alpha1, 3galactosyltransferase, FucT-3 (GDP-Fucose: LM1 alpha1, 4fucosyltransferase). A similar effect was observed with the GLTs involved in the biosyntheses of Gg-series gangliosides, such as SAT-4 (CMP-NeuAc: GgOse4Cer alpha2, 3sialyltransferase, and SAT-2 (CMP-NeuAc: GM3 alpha2, 8sialyltransferase). The glycol-related gene DNA-microarrays also suggested the transcriptional regulation of several GLTs involved in the biosynthesis of neolactosylceramide containing cell-surface antigens in these apoptotic breast carcinoma cells. In the early apoptotic stages (2 to 6 h after L-PPMP treatment) in addition to GlcT-1 gene, several genes (betaGalTs and betaGlcNAcTs) in the SA-Le(a) pathway were stimulated.


Asunto(s)
Antineoplásicos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Morfolinas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Glycoconj J ; 20(9): 563-77, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15454695

RESUMEN

Breast cancer is the most common type of cancer, predominantly among women over 20, whereas colo-rectal cancer occurs in both men and women over the age of 50. Chemotherapy of both cancers affect rapidly growing normal as well as cancer cells. Cancer cells are non-apoptotic. Seven anti-cancer agents (cis -platin, Tamoxifen, Melphalan, Betulinic acid, D-PDMP, L-PPMP, and GD3) have been tested with human breast (SKBR3) and colon (Colo-205) carcinoma cells for their apoptotic effect and found to be positive by several assay systems. Colo-205 cells were obtained from ATCC, and the SKBR3 cells were a gift from the Cleveland Clinic. All of these six agents killed those two cell lines in a dose-dependent manner. In the early apoptotic stage (6 h), these cells showed only a flopping of phosphatidylserine on the outer lamella of the plasma membranes as evidenced by the binding of a novel fluorescent dye PSS-380. After 24 h of the treatment, those apoptotic cells showed damage of the plasma as well as the nuclear membrane as evidenced by binding of propidium iodide to the nuclear DNA. DNA laddering assay viewed further breakdown of DNA by 1% agarose gel electrophoresis analysis. It is concluded that during apoptosis the signaling by Mitochondrial Signaling Pathway (MSP) is stimulated by some of these agents. Caspase 3 was activated with the concomitant appearance of its p17 polypeptide as viewed by Westernblot analyses. Incorporation of radioactivity from [U-(14)C]-L-serine in total sphingolipid mixture was observed between 2 and 4 micromolar concentrations of most of the agents except ci s-platin. However, apoptosis in carcinoma cells in the presence of cis -platin is induced by a caspase 3 activation pathway without any increase in synthesis of ceramide.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Gangliósidos/farmacología , Melfalán/farmacología , Meperidina/análogos & derivados , Meperidina/farmacología , Morfolinas/farmacología , Tamoxifeno/farmacología , Triterpenos/farmacología , Caspasa 3 , Caspasas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Agar , Colorantes Fluorescentes/farmacología , Glicoesfingolípidos/química , Humanos , Microscopía Fluorescente , Modelos Biológicos , Modelos Químicos , Triterpenos Pentacíclicos , Propidio/farmacología , Transducción de Señal , Esfingolípidos/metabolismo , Factores de Tiempo , Dedos de Zinc , Ácido Betulínico
8.
Glycoconj J ; 20(5): 319-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15229396

RESUMEN

Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Le(x) biosyntheses [Basu, S (1991) Glycobiology, 1, 469-475; and ibid, 427-435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of (14)C-L-Serine. At lower concentrations (0-20 microM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both (14)C-sphingolipid and (14)C-ceramide was higher. However, at higher concentrations (20-100 microM), wherein apoptosis occurred in high frequency, the (14)C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Gangliósidos/farmacología , Animales , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Caspasa 3 , Caspasas/metabolismo , Bovinos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Gangliósidos/biosíntesis , Gangliósidos/química , Humanos , Microscopía Fluorescente , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Serina/química , Serina/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo
9.
Glycoconj J ; 20(3): 157-68, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15090729

RESUMEN

Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells by anti-cancer drugs and biosynthetic inhibitors of cells surface glycolipids in the human colon carcinoma cells (Colo-205) are of interest in recent years. In our present studies, we have employed different stereoisomers of PPMP and PDMP (inhibit GlcT-glycosyltransferase (GlcT-GLT)) to initiate apoptosis in Colo-205 cells grown in culture in the presence of (3)H-TdR and (3)H/or (14)C-L-Serine. Our analysis showed that the above reagents (between 1 to 20 microM) initiated apoptosis with induction of Caspase-3 activities and phenotypic morphological changes in a dose-dependent manner. We have observed an increase of radioactive ceramide formation in the presence of a low concentration (1-4 microM) of these reagents in these cell lines. However, high concentrations (4-20 microM) inhibited incorporation of radioactive serine in the higher glycolipids. Colo-205 cells were treated with L-threo-PPMP (0-20 microM) and activities of different GSL: GLTs were estimated in total Golgi-pellets. The cells contained high activity of GalT-4 (UDP-Gal: LcOse3Cer beta 1-4galactosyltransferase), whereas negligible activity of GalT-3 (UDP-Gal: GM2 beta 1-3galactosyltransferase) or GM2-synthase activity of the ganglioside pathway was detected. Previously, GLTs involved in the biosynthetic pathway of SA-Le(x) formation had been detected in these colon carcinoma (or Colo-205) cells (Basu M et al. Glycobiology 1, 527-35 (1991)). However, during progression of apoptosis in Colo-205 cells with increasing concentrations of L-PPMP, the GalT-4 activity was decreased significantly. These changes in the specific activity of GalT-4 in the total Golgi-membranes could be the resultant of decreased gene expression of the enzyme.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicoesfingolípidos/biosíntesis , Meperidina/análogos & derivados , Morfolinas/química , Morfolinas/farmacología , Neoplasias/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Radioisótopos de Carbono , Caspasa 3 , Caspasas/metabolismo , Línea Celular Tumoral , Ceramidas/metabolismo , Fragmentación del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Meperidina/química , Meperidina/farmacología , Estructura Molecular , Morfolinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Serina/metabolismo , Estereoisomerismo
10.
Glycoconj J ; 21(8-9): 487-96, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15750790

RESUMEN

Infectious disease, commonly caused by bacterial pathogens, is now the world's leading cause of premature death and third overall cause behind cardiovascular disease and cancer. Urinary Tract Infection (UTI), caused by E. coli bacteria, is a very common bacterial infection, a majority in women (85%) and may result in severe kidney failure if not detected quickly. Among hundreds of strains the bacteria, E. coli 0157:H7, is emerging as the most aggressive one because of its capability to produce a toxin causing hemolytic uremic syndrome (HUS) resulting in death, especially in children. In the present study, a project has been undertaken for developing a rapid method for UTI detection in very low bacteria concentration, applying current knowledge of nano-technology. Experiments have been designed for the development of biosensors using nano-fabricated structures coated with elements such as gold that have affinity for biomolecules. A biosensor is a device in which a biological sensing element is either intimately connected to or integrated within a transducer. The basic principle for the detection procedure of the infection is partly based on the enzyme-linked immunosorbent assay system. Anti-E. coli antibody-bound Gold Nanowire Arrays (GNWA) prepared on anodized porous alumina template is used for the primary step followed by binding of the bacteria containing specimen. An alkaline phosphatase-conjugated second antibody is then added to the system and the resultant binding determined by both electrochemical and optical measurements. Various kinds of GNWA templates were used in order to determine the one with the best affinity for antibody binding. In addition, an efficient method for enhanced antibody binding has been developed with the covalent immobilization of an organic linker Dithiobissuccinimidylundecanoate (DSU) on the GNWA surface. Studies have also been conducted to optimize the antibody-binding conditions to the linker-attached GNWA surfaces for their ability to detect bacteria in clinical concentrations.


Asunto(s)
Técnicas Biosensibles/instrumentación , Infecciones por Escherichia coli/diagnóstico , Escherichia coli/aislamiento & purificación , Nanotecnología/instrumentación , Anticuerpos Antibacterianos , Oro , Humanos , Nanotecnología/métodos , Análisis Espectral , Infecciones Urinarias/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA