Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 112022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069759

RESUMEN

The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.


From muscles to nerves, our body is formed of many kinds of cells which can each respond slightly differently to the same harmful genetic changes. Understanding the exact relationship between mutations and cell-type specific function is essential to better grasp how conditions such as Parkinson's disease or amyotrophic lateral sclerosis progress and can be treated. Stem cells could be an important tool in that effort, as they can be directed to mature into many cell types in the laboratory. Yet it remains difficult to precisely introduce disease-relevant mutations in these cells. To remove this obstacle, Li et al. focused on prime editing, a cutting-edge 'search and replace' approach which can introduce new genetic information into a specific DNA sequence. However, it was unclear whether this technique could be used to efficiently create stem cell models of human diseases. A first set of experiments showed that prime editing is superior to conventional approaches when generating mutated genes in stem cells. Li et al. then further improved the efficiency and precision of the method by tweaking how prime editing components are delivered into the cells. The refined approach could be harnessed to quickly generate large numbers of stem cells carrying mutations associated with Parkinson's disease; crucially, prime editing could then also be used to revert a mutated gene back to its healthy form. The improved prime editing approach developed by Li et al. removes a major hurdle for scientists hoping to use stem cells to study genetic diseases. This could potentially help to unlock progress in how we understand and ultimately treat these conditions.


Asunto(s)
Células Madre Pluripotentes , ARN Guía de Kinetoplastida , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Edición Génica/métodos , Células Madre Pluripotentes/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , ARN Mensajero/metabolismo , ADN Polimerasa Dirigida por ARN , Ribonucleoproteínas/metabolismo , Sistemas CRISPR-Cas
2.
Nat Commun ; 13(1): 4665, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945201

RESUMEN

Tuberous Sclerosis Complex (TSC) is a neurodevelopmental disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that negatively regulate mTOR complex 1 (mTORC1) signaling. Current treatment strategies focus on mTOR inhibition with rapamycin and its derivatives. While effective at improving some aspects of TSC, chronic rapamycin inhibits both mTORC1 and mTORC2 and is associated with systemic side-effects. It is currently unknown which mTOR complex is most relevant for TSC-related brain phenotypes. Here we used genetic strategies to selectively reduce neuronal mTORC1 or mTORC2 activity in mouse models of TSC. We find that reduction of the mTORC1 component Raptor, but not the mTORC2 component Rictor, rebalanced mTOR signaling in Tsc1 knock-out neurons. Raptor reduction was sufficient to improve several TSC-related phenotypes including neuronal hypertrophy, macrocephaly, impaired myelination, network hyperactivity, and premature mortality. Raptor downregulation represents a promising potential therapeutic intervention for the neurological manifestations of TSC.


Asunto(s)
Proteína Reguladora Asociada a mTOR/metabolismo , Esclerosis Tuberosa/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Neuronas/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Front Neural Circuits ; 15: 700968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366796

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by altered social interaction and communication, and repetitive, restricted, inflexible behaviors. Approximately 1.5-2% of the general population meet the diagnostic criteria for ASD and several brain regions including the cortex, amygdala, cerebellum and basal ganglia have been implicated in ASD pathophysiology. The midbrain dopamine system is an important modulator of cellular and synaptic function in multiple ASD-implicated brain regions via anatomically and functionally distinct dopaminergic projections. The dopamine hypothesis of ASD postulates that dysregulation of dopaminergic projection pathways could contribute to the behavioral manifestations of ASD, including altered reward value of social stimuli, changes in sensorimotor processing, and motor stereotypies. In this review, we examine the support for the idea that cell-autonomous changes in dopaminergic function are a core component of ASD pathophysiology. We discuss the human literature supporting the involvement of altered dopamine signaling in ASD including genetic, brain imaging and pharmacologic studies. We then focus on genetic mouse models of syndromic neurodevelopmental disorders in which single gene mutations lead to increased risk for ASD. We highlight studies that have directly examined dopamine neuron number, morphology, physiology, or output in these models. Overall, we find considerable support for the idea that the dopamine system may be dysregulated in syndromic ASDs; however, there does not appear to be a consistent signature and some models show increased dopaminergic function, while others have deficient dopamine signaling. We conclude that dopamine dysregulation is common in syndromic forms of ASD but that the specific changes may be unique to each genetic disorder and may not account for the full spectrum of ASD-related manifestations.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Dopamina/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación/fisiología
4.
Nat Commun ; 11(1): 3382, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636381

RESUMEN

The Stimulator of Interferon Genes (STING) pathway initiates potent immune responses upon recognition of DNA. To initiate signaling, serine 365 (S365) in the C-terminal tail (CTT) of STING is phosphorylated, leading to induction of type I interferons (IFNs). Additionally, evolutionary conserved responses such as autophagy also occur downstream of STING, but their relative importance during in vivo infections remains unclear. Here we report that mice harboring a serine 365-to-alanine (S365A) mutation in STING are unexpectedly resistant to Herpes Simplex Virus (HSV)-1, despite lacking STING-induced type I IFN responses. By contrast, resistance to HSV-1 is abolished in mice lacking the STING CTT, suggesting that the STING CTT initiates protective responses against HSV-1, independently of type I IFNs. Interestingly, we find that STING-induced autophagy is a CTT- and TBK1-dependent but IRF3-independent process that is conserved in the STING S365A mice. Thus, interferon-independent functions of STING mediate STING-dependent antiviral responses in vivo.


Asunto(s)
Herpes Simple/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/genética , Animales , Autofagia , Femenino , Herpesvirus Humano 1 , Evasión Inmune , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Mutación Puntual , Transducción de Señal
5.
Dev Dyn ; 249(1): 46-55, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31070828

RESUMEN

Recent advances in human stem cell and genome engineering have enabled the generation of genetically defined human cellular models for brain disorders. These models can be established from a patient's own cells and can be genetically engineered to generate isogenic, controlled systems for mechanistic studies. Given the challenges of obtaining and working with primary human brain tissue, these models fill a critical gap in our understanding of normal and abnormal human brain development and provide an important complement to animal models. Recently, there has been major progress in modeling the neuropathophysiology of the canonical "mTORopathy" tuberous sclerosis complex (TSC) with such approaches. Studies using two- and three-dimensional cultures of human neurons and glia have provided new insights into how mutations in the TSC1 and TSC2 genes impact human neural development and function. Here we discuss recent progress in human stem cell-based modeling of TSC and highlight challenges and opportunities for further efforts in this area.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Organoides/metabolismo , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Animales , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre/metabolismo , Células Madre/patología
6.
Nat Commun ; 10(1): 5426, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780742

RESUMEN

Tuberous Sclerosis Complex (TSC) is a neurodevelopmental disorder caused by mutations in TSC1 or TSC2, which encode proteins that negatively regulate mTOR complex 1 (mTORC1). TSC is associated with significant cognitive, psychiatric, and behavioral problems, collectively termed TSC-Associated Neuropsychiatric Disorders (TAND), and the cell types responsible for these manifestations are largely unknown. Here we use cell type-specific Tsc1 deletion to test whether dopamine neurons, which modulate cognitive, motivational, and affective behaviors, are involved in TAND. We show that loss of Tsc1 and constitutive activation of mTORC1 in dopamine neurons causes somatodendritic hypertrophy, reduces intrinsic excitability, alters axon terminal structure, and impairs striatal dopamine release. These perturbations lead to a selective deficit in cognitive flexibility, preventable by genetic reduction of the mTOR-binding protein Raptor. Our results establish a critical role for Tsc1-mTORC1 signaling in setting the functional properties of dopamine neurons, and indicate that dopaminergic dysfunction may contribute to cognitive inflexibility in TSC.


Asunto(s)
Cognición/fisiología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Animales , Axones/patología , Conducta Animal , Cuerpo Celular/patología , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/patología , Técnicas de Inactivación de Genes , Hipertrofia , Ratones , Motivación , Plasticidad Neuronal/genética , Transducción de Señal , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/psicología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
7.
Nat Med ; 24(10): 1568-1578, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30127391

RESUMEN

Tuberous sclerosis complex (TSC) is a multisystem developmental disorder caused by mutations in the TSC1 or TSC2 genes, whose protein products are negative regulators of mechanistic target of rapamycin complex 1 signaling. Hallmark pathologies of TSC are cortical tubers-regions of dysmorphic, disorganized neurons and glia in the cortex that are linked to epileptogenesis. To determine the developmental origin of tuber cells, we established human cellular models of TSC by CRISPR-Cas9-mediated gene editing of TSC1 or TSC2 in human pluripotent stem cells (hPSCs). Using heterozygous TSC2 hPSCs with a conditional mutation in the functional allele, we show that mosaic biallelic inactivation during neural progenitor expansion is necessary for the formation of dysplastic cells and increased glia production in three-dimensional cortical spheroids. Our findings provide support for the second-hit model of cortical tuber formation and suggest that variable developmental timing of somatic mutations could contribute to the heterogeneity in the neurological presentation of TSC.


Asunto(s)
Ingeniería Genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Humanos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Células Madre Pluripotentes/trasplante , Esferoides Celulares/metabolismo , Esclerosis Tuberosa/fisiopatología
8.
Proc Natl Acad Sci U S A ; 114(11): 2813-2818, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242676

RESUMEN

We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico , Imagen de Colorante Sensible al Voltaje/métodos , Xantonas/química , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Epilepsia/genética , Humanos , Ratones , Neuronas/patología , Fotones , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/aislamiento & purificación
9.
Neuron ; 78(3): 510-22, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23664616

RESUMEN

Neural circuits are regulated by activity-dependent feedback systems that tightly control network excitability and which are thought to be crucial for proper brain development. Defects in the ability to establish and maintain network homeostasis may be central to the pathogenesis of neurodevelopmental disorders. Here, we examine the function of the tuberous sclerosis complex (TSC)-mTOR signaling pathway, a common target of mutations associated with epilepsy and autism spectrum disorder, in regulating activity-dependent processes in the mouse hippocampus. We find that the TSC-mTOR pathway is a central component of a positive feedback loop that promotes network activity by repressing inhibitory synapses onto excitatory neurons. In Tsc1 KO neurons, weakened inhibition caused by deregulated mTOR alters the balance of excitatory and inhibitory synaptic transmission, leading to hippocampal hyperexcitability. These findings identify the TSC-mTOR pathway as a regulator of neural network activity and have implications for the neurological dysfunction in disorders exhibiting deregulated mTOR signaling.


Asunto(s)
Hipocampo/fisiopatología , Sinapsis/fisiología , Esclerosis Tuberosa/fisiopatología , Proteínas Supresoras de Tumor/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
10.
J Biol Chem ; 287(33): 27806-12, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22753408

RESUMEN

Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia.


Asunto(s)
AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Dopamina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Animales , Antiparkinsonianos/farmacología , AMP Cíclico/genética , Dopamina/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Levodopa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Proteínas/genética , Serina-Treonina Quinasas TOR
11.
Proc Natl Acad Sci U S A ; 107(33): 14845-50, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20682746

RESUMEN

The direct and indirect pathways of the basal ganglia have been proposed to oppositely regulate locomotion and differentially contribute to pathological behaviors. Analysis of the distinct contributions of each pathway to behavior has been a challenge, however, due to the difficulty of selectively investigating the neurons comprising the two pathways using conventional techniques. Here we present two mouse models in which the function of striatonigral or striatopallidal neurons is selectively disrupted due to cell type-specific deletion of the striatal signaling protein dopamine- and cAMP-regulated phosphoprotein Mr 32kDa (DARPP-32). Using these mice, we found that the loss of DARPP-32 in striatonigral neurons decreased basal and cocaine-induced locomotion and abolished dyskinetic behaviors in response to the Parkinson's disease drug L-DOPA. Conversely, the loss of DARPP-32 in striatopallidal neurons produced a robust increase in locomotor activity and a strongly reduced cataleptic response to the antipsychotic drug haloperidol. These findings provide insight into the selective contributions of the direct and indirect pathways to striatal motor behaviors.


Asunto(s)
Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/fisiología , Actividad Motora/fisiología , Neuronas/metabolismo , Animales , Catalepsia/inducido químicamente , Catalepsia/fisiopatología , Cocaína/farmacología , Cuerpo Estriado/citología , Dopaminérgicos/toxicidad , Inhibidores de Captación de Dopamina/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/fisiopatología , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Haloperidol/toxicidad , Inmunohistoquímica , Levodopa/toxicidad , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/clasificación , Neuronas/citología , Potenciales Sinápticos/fisiología
12.
J Neurochem ; 113(4): 1046-59, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20236221

RESUMEN

Studies in animal models of Parkinson's disease have revealed that degeneration of noradrenaline neurons is involved in the motor deficits. Several types of adrenoceptors are highly expressed in neostriatal neurons. However, the selective actions of these receptors on striatal signaling pathways have not been characterized. In this study, we investigated the role of adrenoceptors in the regulation of dopamine/dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) signaling by analyzing DARPP-32 phosphorylation at Thr34 [protein kinase A (PKA)-site] in mouse neostriatal slices. Activation of beta(1)-adrenoceptors induced a rapid and transient increase in DARPP-32 phosphorylation. Activation of alpha(2)-adrenoceptors also induced a rapid and transient increase in DARPP-32 phosphorylation, which subsequently decreased below basal levels. In addition, activation of alpha(2)-adrenoceptors attenuated, and blockade of alpha(2)-adrenoceptors enhanced dopamine D(1) and adenosine A(2A) receptor/DARPP-32 signaling. Chemical lesioning of noradrenergic neurons mimicked the effects of alpha(2)-adrenoceptor blockade. Under conditions of alpha(2)-adrenoceptor blockade, the dopamine D(2) receptor-induced decrease in DARPP-32 phosphorylation was attenuated. Our data demonstrate that beta(1)- and alpha(2)-adrenoceptors regulate DARPP-32 phosphorylation in neostriatal neurons. G(i) activation by alpha(2)-adrenoceptors antagonizes G(s)/PKA signaling mediated by D(1) and A(2A) receptors in striatonigral and striatopallidal neurons, respectively, and thereby enhances D(2) receptor/G(i) signaling in striatopallidal neurons. alpha(2)-Adrenoceptors may therefore be a therapeutic target for the treatment of Parkinson's disease.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Dopamina/metabolismo , Neostriado/metabolismo , Neuronas/metabolismo , Receptores Adrenérgicos/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2 , Animales , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neostriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Fosforilación/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Receptores Adrenérgicos/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Treonina/metabolismo
13.
J Neurosci ; 28(42): 10460-71, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923023

RESUMEN

Phosphodiesterase (PDE) is a critical regulator of cAMP/protein kinase A (PKA) signaling in cells. Multiple PDEs with different substrate specificities and subcellular localization are expressed in neurons. Dopamine plays a central role in the regulation of motor and cognitive functions. The effect of dopamine is largely mediated through the cAMP/PKA signaling cascade, and therefore controlled by PDE activity. We used in vitro and in vivo biochemical techniques to dissect the roles of PDE4 and PDE10A in dopaminergic neurotransmission in mouse striatum by monitoring the ability of selective PDE inhibitors to regulate phosphorylation of presynaptic [e.g., tyrosine hydroxylase (TH)] and postsynaptic [e.g., dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32)] PKA substrates. The PDE4 inhibitor, rolipram, induced a large increase in TH Ser40 phosphorylation at dopaminergic terminals that was associated with a commensurate increase in dopamine synthesis and turnover in striatum in vivo. Rolipram induced a small increase in DARPP-32 Thr34 phosphorylation preferentially in striatopallidal neurons by activating adenosine A(2A) receptor signaling in striatum. In contrast, the PDE10A inhibitor, papaverine, had no effect on TH phosphorylation or dopamine turnover, but instead robustly increased DARPP-32 Thr34 and GluR1 Ser845 phosphorylation in striatal neurons. Inhibition of PDE10A by papaverine activated cAMP/PKA signaling in both striatonigral and striatopallidal neurons, resulting in potentiation of dopamine D(1) receptor signaling and inhibition of dopamine D(2) receptor signaling. These biochemical results are supported by immunohistochemical data demonstrating differential localization of PDE10A and PDE4 in striatum. These data underscore the importance of individual brain-enriched cyclic-nucleotide PDE isoforms as therapeutic targets for neuropsychiatric and neurodegenerative disorders affecting dopamine neurotransmission.


Asunto(s)
Cuerpo Estriado/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Hidrolasas Diéster Fosfóricas/fisiología , Animales , Cuerpo Estriado/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
J Neurochem ; 107(4): 1014-26, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18823371

RESUMEN

Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neostriado/metabolismo , Receptores de Dopamina D1/fisiología , Transducción de Señal/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Ciclosporina/farmacología , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neostriado/efectos de los fármacos , Fosforilación/efectos de los fármacos , Pirrolidinonas/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Treonina/metabolismo , Factores de Tiempo
15.
Nat Neurosci ; 11(8): 932-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622401

RESUMEN

DARPP-32 is a dual-function protein kinase/phosphatase inhibitor that is involved in striatal signaling. The phosphorylation of DARPP-32 at threonine 34 is essential for mediating the effects of both psychostimulant and antipsychotic drugs; however, these drugs are known to have opposing behavioral and clinical effects. We hypothesized that these drugs exert differential effects on striatonigral and striatopallidal neurons, which comprise distinct output pathways of the basal ganglia. To directly test this idea, we developed bacterial artificial chromosome transgenic mice that allowed the analysis of DARPP-32 phosphorylation selectively in striatonigral and striatopallidal neurons. Using this new methodology, we found that cocaine, a psychostimulant, and haloperidol, a sedation-producing antipsychotic, exert differential effects on DARPP-32 phosphorylation in the two neuronal populations that can explain their opposing behavioral effects. Furthermore, we found that a variety of drugs that target the striatum have cell type-specific effects that previous methods were not able to discern.


Asunto(s)
Antipsicóticos/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Animales , Cafeína/farmacología , Cromosomas Artificiales Bacterianos/genética , Clozapina/farmacología , Cocaína/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/efectos de los fármacos , Globo Pálido/citología , Globo Pálido/efectos de los fármacos , Globo Pálido/metabolismo , Haloperidol/farmacología , Ratones , Ratones Transgénicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosforilación/efectos de los fármacos , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA