Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892033

RESUMEN

The Epstein-Barr virus (EBV) is frequently found in endomyocardial biopsies (EMBs) from patients with heart failure, but the detection of EBV-specific DNA has not been associated with progressive hemodynamic deterioration. In this paper, we investigate the use of targeted next-generation sequencing (NGS) to detect EBV transcripts and their correlation with myocardial inflammation in EBV-positive patients with heart failure with reduced ejection fraction (HFrEF). Forty-four HFrEF patients with positive EBV DNA detection and varying degrees of myocardial inflammation were selected. EBV-specific transcripts from EMBs were enriched using a custom hybridization capture-based workflow and, subsequently, sequenced by NGS. The short-read sequencing revealed the presence of EBV-specific transcripts in 17 patients, of which 11 had only latent EBV genes and 6 presented with lytic transcription. The immunohistochemical staining for CD3+ T lymphocytes showed a significant increase in the degree of myocardial inflammation in the presence of EBV lytic transcripts, suggesting a possible influence on the clinical course. These results imply the important role of EBV lytic transcripts in the pathogenesis of inflammatory heart disease and emphasize the applicability of targeted NGS in EMB diagnostics as a basis for specific treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Insuficiencia Cardíaca , Herpesvirus Humano 4 , Miocarditis , Humanos , Herpesvirus Humano 4/genética , Insuficiencia Cardíaca/virología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Masculino , Femenino , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Persona de Mediana Edad , Miocarditis/virología , Miocarditis/patología , Anciano , Secuenciación de Nucleótidos de Alto Rendimiento , Miocardio/patología , Miocardio/metabolismo , ADN Viral/genética , Adulto , Biopsia
2.
ESC Heart Fail ; 10(6): 3410-3418, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37679968

RESUMEN

AIMS: Inflammation of the heart is a complex biological and pathophysiological response of the immune system to a variety of injuries leading to tissue damage and heart failure. MicroRNAs (miRNAs) emerge as pivotal players in the development of numerous diseases, suggesting their potential utility as biomarkers for inflammation and as viable candidates for therapeutic interventions. The primary aim of this investigation was to pinpoint and assess particular miRNAs in individuals afflicted by virus-negative inflammatory dilated cardiomyopathy (DCMi). METHODS AND RESULTS: The study involved the analysis of 152 serum samples sourced from patients diagnosed with unexplained heart failure through endomyocardial biopsy. Among these samples, 38 belonged to DCMi patients, 24 to DCM patients, 44 to patients displaying inflammation alongside diverse viral infections, and 46 to patients solely affected by viral infections without concurrent inflammation. Additionally, serum samples from 10 healthy donors were included. The expression levels of 754 distinct miRNAs were evaluated using TaqMan OpenArray. MiR-1, miR-23, miR-142-5p, miR-155, miR-193, and miR-195 exhibited exclusive down-regulation solely in DCMi patients (P < 0.005). These miRNAs enabled effective differentiation between individuals with inflammation unlinked to viruses (DCMi) and all other participant groups (P < 0.005), boasting a specificity surpassing 86%. CONCLUSIONS: The identification of specific miRNAs offers a novel diagnostic perspective for recognizing intramyocardial inflammation within virus-negative DCMi patients. Furthermore, these miRNAs hold promise as potential candidates for tailored therapeutic strategies in the context of virus-negative DCMi.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , MicroARNs , Miocarditis , Virosis , Humanos , Miocarditis/diagnóstico , Miocarditis/terapia , Inflamación , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/terapia , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia
3.
J Clin Med ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568452

RESUMEN

The diagnosis and specific and causal treatment of myocarditis and inflammatory cardiomyopathy remain a major clinical challenge. Despite the rapid development of new imaging techniques, endomyocardial biopsies remain the gold standard for accurate diagnosis of inflammatory myocardial disease. With the introduction and continued development of immunohistochemical inflammation diagnostics in combination with viral nucleic acid testing, myocarditis diagnostics have improved significantly since their introduction. Together with new technologies such as miRNA and gene expression profiling, quantification of specific immune cell markers, and determination of viral activity, diagnostic accuracy and patient prognosis will continue to improve in the future. In this review, we summarize the current knowledge on the pathogenesis and diagnosis of myocarditis and inflammatory cardiomyopathies and highlight future perspectives for more in-depth and specialized biopsy diagnostics and precision, personalized medicine approaches.

4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805941

RESUMEN

Myocarditis in response to COVID-19 vaccination has been reported since early 2021. In particular, young male individuals have been identified to exhibit an increased risk of myocardial inflammation following the administration of mRNA-based vaccines. Even though the first epidemiological analyses and numerous case reports investigated potential relationships, endomyocardial biopsy (EMB)-proven cases are limited. Here, we present a comprehensive histopathological analysis of EMBs from 15 patients with reduced ejection fraction (LVEF = 30 (14-39)%) and the clinical suspicion of myocarditis following vaccination with Comirnaty® (Pfizer-BioNTech) (n = 11), Vaxzevria® (AstraZenica) (n = 2) and Janssen® (Johnson & Johnson) (n = 2). Immunohistochemical EMB analyses reveal myocardial inflammation in 14 of 15 patients, with the histopathological diagnosis of active myocarditis according the Dallas criteria (n = 2), severe giant cell myocarditis (n = 2) and inflammatory cardiomyopathy (n = 10). Importantly, infectious causes have been excluded in all patients. The SARS-CoV-2 spike protein has been detected sparsely on cardiomyocytes of nine patients, and differential analysis of inflammatory markers such as CD4+ and CD8+ T cells suggests that the inflammatory response triggered by the vaccine may be of autoimmunological origin. Although a definitive causal relationship between COVID-19 vaccination and the occurrence of myocardial inflammation cannot be demonstrated in this study, data suggest a temporal connection. The expression of SARS-CoV-2 spike protein within the heart and the dominance of CD4+ lymphocytic infiltrates indicate an autoimmunological response to the vaccination.


Asunto(s)
COVID-19 , Miocarditis , Biopsia , Linfocitos T CD8-positivos , Vacunas contra la COVID-19/efectos adversos , Humanos , Inflamación/etiología , Masculino , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación/efectos adversos
5.
J Clin Med ; 10(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830522

RESUMEN

The diagnosis of acute and chronic myocarditis remains a challenge for clinicians. Characterization of this disease has been hampered by its diverse etiologies and heterogeneous clinical presentations. Most cases of myocarditis are caused by infectious agents. Despite successful research in the last few years, the pathophysiology of viral myocarditis and its sequelae leading to severe heart failure with a poor prognosis is not fully understood and represents a significant public health issue globally. Most likely, at a certain point, besides viral persistence, several etiological types merge into a common pathogenic autoimmune process leading to chronic inflammation and tissue remodeling, ultimately resulting in the clinical phenotype of dilated cardiomyopathy. Understanding the underlying molecular mechanisms is necessary to assess the prognosis of patients and is fundamental to appropriate specific and personalized therapeutic strategies. To reach this clinical prerequisite, there is the need for advanced diagnostic tools, including an endomyocardial biopsy and guidelines to optimize the management of this disease. The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has currently led to the worst pandemic in a century and has awakened a special sensitivity throughout the world to viral infections. This work aims to summarize the pathophysiology of viral myocarditis, advanced diagnostic methods and the current state of treatment options.

6.
Basic Res Cardiol ; 116(1): 1, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432417

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) has a cardioprotective function in mice by repressing cardiac fibrosis through TGF-ß and plasminogen-mediated pathways. In addition it is known to be involved in the recruitment and polarization of monocytes/macrophages towards a M2 phenotype in cancer. Here, we investigated the expression of PAI-1 in human dilated cardiomyopathy (DCM) and inflammatory dilated cardiomyopathy (DCMi) and its effect on cardiac fibrosis and macrophage polarization. We retrospectively analyzed endomyocardial biopsies (EMBs) of patients with DCM or DCMi for PAI-1 expression by immunohistochemistry. Furthermore, EMBs were evaluated for the content of fibrotic tissue, number of activated myofibroblasts, TGF-ß expression, as well as for M1 and M2 macrophages. Patients with high-grade DCMi (DCMi-high, CD3+ lymphocytes > 30 cells/mm2) had significantly increased PAI-1 levels compared to DCM and low-grade DCMi patients (DCMi-low, CD3+ lymphocytes = 14-30 cells/mm2) (15.5 ± 0.4% vs. 1.0 ± 0.1% and 4.0 ± 0.1%, p ≤ 0.001). Elevated PAI-1 expression in DCMi-high subjects was associated with a diminished degree of cardiac fibrosis, decreased levels of TGF-ß and reduced number of myofibroblasts. In addition, DCMi-high patients revealed an increased proportion of non-classical M2 macrophages towards classical M1 macrophages, indicating M2 macrophage-favoring properties of PAI-1 in inflammatory cardiomyopathies. Our findings give evidence that elevated expression of cardiac PAI-1 in subjects with high-grade DCMi suppresses fibrosis by inhibiting TGF-ß and myofibroblast activation. Moreover, our data indicate that PAI-1 is involved in the polarization of M2 macrophages in the heart. Thus, PAI-1 could serve as a potential prognostic biomarker and as a possible therapeutic target in inflammatory cardiomyopathies.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Diferenciación Celular , Macrófagos/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Adulto , Anciano , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/patología , Femenino , Fibrosis , Humanos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Persona de Mediana Edad , Miocardio/inmunología , Miocardio/patología , Miofibroblastos/inmunología , Miofibroblastos/patología , Fenotipo , Estudios Retrospectivos , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
7.
Int J Infect Dis ; 102: 70-72, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33045427

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has reached pandemic levels. Cardiovascular complications in COVID-19 have been reported frequently, however evidence for a causal relationship has not been established. This report describes the detection of SARS-CoV-2 viral genomes in a patient with symptoms of heart failure, in whom endomyocardial biopsy was investigated following a latency period of 4 weeks after the onset of pulmonary symptoms. The viral infection was accompanied by myocardial inflammation indicating an infection of the heart muscle.


Asunto(s)
COVID-19/complicaciones , Insuficiencia Cardíaca/virología , Miocarditis/virología , SARS-CoV-2/aislamiento & purificación , Biopsia , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Corazón/virología , Humanos , Pulmón/patología , Persona de Mediana Edad , Pandemias , Latencia del Virus
8.
ESC Heart Fail ; 7(5): 2440-2447, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32529795

RESUMEN

AIMS: Since December 2019, the novel coronavirus SARS-CoV-2 has spread rapidly throughout China and keeps the world in suspense. Cardiovascular complications with myocarditis and embolism due to COVID-19 have been reported. SARS-CoV-2 genome detection in the heart muscle has not been demonstrated so far, and the underlying pathophysiological mechanisms remain to be investigated. METHODS AND RESULTS: Endomyocardial biopsies (EMBs) of 104 patients (mean age: 57.90 ± 16.37 years; left ventricular ejection fraction: 33.7 ± 14.6%, sex: n = 79 male/25 female) with suspected myocarditis or unexplained heart failure were analysed. EMB analysis included histology, immunohistochemistry, and detection of SARS-CoV-2 genomes by real-time reverse transcription polymerase chain reaction in the IKDT Berlin, Germany. Among 104 EMBs investigated, five were confirmed with SARS-CoV-2 infected by reverse real-time transcriptase polymerase chain reaction. We describe patients of different history of symptoms and time duration. Additionally, we investigated histopathological changes in myocardial tissue showing that the inflammatory process in EMBs seemed to permeate vascular wall leading to small arterial obliteration and damage. CONCLUSIONS: This is the first report that established the evidence of SARS-CoV-2 genomes detection in EMBs. In these patients, myocardial injury ischaemia may play a role, which could explain the ubiquitous troponin increases. EMB-based identification of the cause of myocardial injury may contribute to explain the different evolution of complicated SARS-CoV-2-infection and to design future specific and personalized treatment strategies.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/virología , Miocarditis/patología , Neumonía Viral/epidemiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Adulto , Factores de Edad , Anciano , Biopsia con Aguja , COVID-19 , Estudios de Cohortes , Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Endocardio/patología , Femenino , Genómica , Alemania/epidemiología , Insuficiencia Cardíaca/genética , Humanos , Inmunohistoquímica , Incidencia , Masculino , Persona de Mediana Edad , Miocarditis/genética , Miocarditis/virología , Pandemias/estadística & datos numéricos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estudios Retrospectivos , Factores Sexuales , Análisis de Supervivencia
9.
J Nutr Biochem ; 63: 109-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359860

RESUMEN

Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis.


Asunto(s)
Proteínas en la Dieta/farmacología , Dipeptidil Peptidasa 4/genética , Epigénesis Genética , Aminoácidos/farmacología , Animales , Islas de CpG , Metilación de ADN/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos
10.
Mol Metab ; 6(10): 1254-1263, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031724

RESUMEN

OBJECTIVE: Increased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity. METHODS: Plasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity. RESULTS: Subjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content. CONCLUSIONS: Our results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Resistencia a la Insulina/fisiología , Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Animales , Dipeptidil Peptidasa 4/sangre , Dipeptidil Peptidasa 4/genética , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Insulina/sangre , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/enzimología , Obesidad/sangre , Obesidad/metabolismo
11.
Diabetes ; 66(1): 25-35, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999105

RESUMEN

Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4 In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.


Asunto(s)
Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Animales , Western Blotting , Línea Celular , Células Cultivadas , Islas de CpG/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
12.
Biochim Biophys Acta ; 1851(5): 566-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25645620

RESUMEN

Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species.


Asunto(s)
Restricción Calórica , Diabetes Mellitus Tipo 2/prevención & control , Diglicéridos/metabolismo , Ayuno , Privación de Alimentos , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Obesidad/dietoterapia , Proteoma/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones Obesos , Músculo Esquelético/metabolismo , Obesidad/sangre , Obesidad/complicaciones , Oxidación-Reducción , Proteína Quinasa C-epsilon/metabolismo , Factores de Tiempo
13.
Diabetologia ; 58(3): 604-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25527001

RESUMEN

AIMS/HYPOTHESIS: Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. METHODS: Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. RESULTS: In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. CONCLUSIONS/INTERPRETATION: GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.


Asunto(s)
Estrógenos/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Hiperfagia/tratamiento farmacológico , Hiperfagia/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Obesos , Nueva Zelanda
14.
DNA Repair (Amst) ; 10(2): 176-87, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21111690

RESUMEN

MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Reparación del ADN , Inestabilidad Genómica , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Daño del ADN , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Mutación , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Monoéster Fosfórico Hidrolasas/genética , Pirofosfatasas/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA