Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Oncol ; 13: 1295185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909019

RESUMEN

Introduction: An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods: In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results: CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion: Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.

2.
Infect Immun ; 85(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28947643

RESUMEN

Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Interleucina-1alfa/inmunología , Pulmón/inmunología , Animales , Células Cultivadas , Inmunocompetencia , Inflamación , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Esporas Fúngicas/inmunología , Esporas Fúngicas/patogenicidad , Virulencia
3.
EMBO J ; 33(19): 2261-76, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25092765

RESUMEN

Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.


Asunto(s)
Adaptación Fisiológica , Aspergilosis/metabolismo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Factores de Transcripción/metabolismo , Aspergilosis/genética , Aspergilosis/virología , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Fúngicas/genética , Homeostasis , Inmunoprecipitación , Inanición , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Vacuolas/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA