Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
Eur Respir J ; 62(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385655

RESUMEN

BACKGROUND: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS: We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS: Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION: Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Linfocitos T CD8-positivos , Antivirales , Fumar Cigarrillos/efectos adversos , Antígenos de Histocompatibilidad Clase I/metabolismo , Citocinas , Epítopos , Inmunidad
2.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139450

RESUMEN

During experimental tuberculosis (TB), interleukin (IL)-17A appears to be involved in the formation of lung granulomas, possibly through the attraction of neutrophils to the sites of infection. However, the protective impact of cytokine appears to depend on the degree of its induction. Hence, robust production of IL-17A in mice infected with the hypervirulent isolate Mycobacterium tuberculosis (Mtb) HN878 mediates protection, while the cytokine is dispensable for protective immune responses against low-dose infection with the less virulent strain H37rv. Here, we show that after experimental infection with high doses of Mtb H37rv, IL-17A-deficient (-/-) mice exhibited high susceptibility to the infection, which was mediated by the strong accumulation of neutrophils in the infected lung tissue. Accordingly, we observed nearly unrestricted bacterial replication within the neutrophils, indicating that they may serve as a survival niche for Mtb. By use of IL-17A/IL-17F-double-deficient mice, we demonstrated that the susceptibility in the absence of IL-17A is mediated by a compensatory expression of IL-17F, which, however, appeared not to be dependent on neutrophils. Together, our results illustrate the compensatory potential of the Th17-secreted cytokines IL-17A and IL-17F in the context of experimental TB and once again emphasize the detrimental effect of excessive neutrophil infiltration in response to Mtb.


Asunto(s)
Interleucina-17 , Tuberculosis , Animales , Citocinas/metabolismo , Interleucina-17/deficiencia , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/metabolismo , Tuberculosis/inmunología
3.
Am J Pathol ; 192(5): 813-823, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181333

RESUMEN

Progression of prostate cancer (PCa) is characterized by metastasis and castration resistance after response to androgen deprivation. Therapeutic options are limited, causing high morbidity and lethality. Recent work reported pro-oncogenic implications of the Mediator subunits cyclin-dependent kinase (CDK) 8 and 19 for the progression of PCa. The current study explored the underlying molecular mechanisms of CDK8/CDK19 and tested effects of novel CDK8/CDK19 inhibitors. PC3, DU145, LNCaP, and androgen-independent LNCaP Abl were used for in vitro experiments. Two inhibitors and CDK19 overexpression were used to modify CDK8/CDK19 activity. MTT assay, propidium iodide staining, wound healing assay, Boyden chamber assay, and adhesion assay were used to investigate cell viability, cell cycle, migration, and adhesion, respectively. Peptide-kinase screen using the PamGene platform was conducted to identify phosphorylated targets. Combining CDK8/CDK19 inhibitors with anti-androgens led to synergistic antiproliferative effects and sensitized androgen-independent cells to bicalutamide. CDK8/CDK19 inhibition resulted in reduced migration and increased collagen I-dependent adhesion. Phosphorylation of multiple peptides linked to cancer progression was identified to be dependent on CDK8/CDK19. In summary, this study substantially supports recent findings on CDK8/CDK19 in PCa progression. These findings contribute to a better understanding of underlying pro-oncogenic effects, which is needed to develop CDK8/CDK19 as a therapeutic target in PCa.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Neoplasias de la Próstata , Antagonistas de Andrógenos , Andrógenos , Carcinogénesis , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
4.
Nat Commun ; 12(1): 5911, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625545

RESUMEN

Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Ligadas a GPI/metabolismo , Terapia de Inmunosupresión , 5'-Nucleotidasa/genética , Adenosina Trifosfato , Animales , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Vesículas Extracelulares/inmunología , Humanos , Inflamación , Activación de Linfocitos , Ratones , Linfocitos T , Linfocitos T Reguladores/inmunología
5.
J Mol Med (Berl) ; 99(11): 1585-1602, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34351501

RESUMEN

Interleukin (IL)-17A-producing T helper (Th)17 cells are increasingly being acknowledged to be associated with protective immunity to Mycobacterium tuberculosis (Mtb). Subunit vaccines potently promote protective immune responses against Mtb infection that correlate with an expansion of IL-23-dependent Th17 cells. Previous studies revealed that after vaccination, IL-23 is required for protection against challenge with Mtb but the underlying IL-23-dependent-and possibly IL-17A-mediated-mechanisms remain elusive. Therefore, we here analyzed the early outcome of Mtb infection in C57BL/6, IL-23p19-deficient (-/-), and IL-17A-/- mice after vaccination with the subunit vaccine H1-DDA/TDB to investigate the role of the IL-23-Th17 immune axis for the instruction of vaccine-induced protection. While in IL-23p19-/- mice the protective effect was reduced, protection after vaccination was maintained in IL-17A-/- animals for the course of infection of 6 weeks, indicating that after vaccination with H1-DDA/TDB early protection against Mtb is-although dependent on IL-23-not mediated by IL-17A. In contrast, IL-17A deficiency appears to have an impact on maintaining long-term protection. In fact, IL-23 instructed the vaccine-induced memory immunity in the lung, in particular the sustained expansion of tumor necrosis factor (TNF)+IL-2+ multifunctional T cells, independently of IL-17A. Altogether, a targeted induction of IL-23 during vaccination against Mtb might improve the magnitude and quality of vaccine-induced memory immune responses. KEY MESSAGES: After subunit Mtb vaccination with H1-DDA/TDB, IL-23 but not IL-17A contributes to vaccine-induced early protection against infection with Mtb. IL-17F does not compensate for IL-17A deficiency in terms of H1-DDA/TDB-induced protection against Mtb infection. IL 23 promotes the H1-DDA/TDB-induced accumulation of effector memory T cells independently of IL 17A. IL-23 arbitrates the induction of H1-specific IFN-γ-TNF+IL-2+ double-positive multifunctional CD4 T cells after subunit Mtb vaccination in an IL-17A-independent manner.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Linfocitos T CD4-Positivos/efectos de los fármacos , Interleucina-23/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Animales , Linfocitos T CD4-Positivos/inmunología , Femenino , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-23/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología , Tuberculosis/prevención & control
6.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34255743

RESUMEN

In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Proteínas Proto-Oncogénicas/metabolismo , Triglicéridos/metabolismo , Proteínas Wnt/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Animales , Antituberculosos/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Células Espumosas/metabolismo , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/fisiología , Humanos , Isoniazida/administración & dosificación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/microbiología , Proteínas Wnt/deficiencia , Proteínas Wnt/genética
7.
Cells ; 10(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375150

RESUMEN

Anti-inflammatory treatment of chronic inflammatory diseases often increases susceptibility to infectious diseases such as tuberculosis (TB). Since numerous chronic inflammatory and autoimmune diseases are mediated by interleukin (IL)-6-induced T helper (TH) 17 cells, a TH17-directed anti-inflammatory therapy may be preferable to an IL-12-dependent TH1 inhibition in order to avoid reactivation of latent infections. To assess, however, the risk of inhibition of IL-6-dependent TH17-mediated inflammation, we examined the TH17 immune response and the course of experimental TB in IL-6- and T-cell-specific gp130-deficient mice. Our study revealed that the absence of IL-6 or gp130 on T cells has only a minor effect on the development of antigen-specific TH1 and TH17 cells. Importantly, these gene-deficient mice were as capable as wild type mice to control mycobacterial infection. Together, in contrast to its key function for TH17 development in other inflammatory diseases, IL-6 plays an inferior role for the generation of TH17 immune responses during experimental TB.


Asunto(s)
Receptor gp130 de Citocinas/inmunología , Interleucina-17/inmunología , Interleucina-6/inmunología , Células Th17/inmunología , Tuberculosis/inmunología , Inmunidad Adaptativa , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/citología
8.
Allergy ; 75(2): 346-356, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31386204

RESUMEN

BACKGROUND: miRNAs are master regulators of signaling pathways critically involved in asthma and are transferred between cells in extracellular vesicles (EV). We aimed to investigate whether the miRNA content of EV secreted by primary normal human bronchial epithelial cells (NHBE) is altered upon asthma development. METHODS: NHBE cells were cultured at air-liquid interface and treated with interleukin (IL)-13 to induce an asthma-like phenotype. EV isolations by precipitation from basal culture medium or apical surface wash were characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blot, and EV-associated miRNAs were identified by a RT-qPCR-based profiling. Significant candidates were confirmed in EVs isolated by size-exclusion chromatography from nasal lavages of children with mild-to-moderate (n = 8) or severe asthma (n = 9), and healthy controls (n = 9). RESULTS: NHBE cells secrete EVs to the apical and basal side. 47 miRNAs were expressed in EVs and 16 thereof were significantly altered in basal EV upon IL-13 treatment. Expression of miRNAs could be confirmed in EVs from human nasal lavages. Of note, levels of miR-92b, miR-210, and miR-34a significantly correlated with lung function parameters in children (FEV1 FVC%pred and FEF25-75%pred ), thus lower sEV-miRNA levels in nasal lavages associated with airway obstruction. Subsequent ingenuity pathway analysis predicted the miRNAs to regulate Th2 polarization and dendritic cell maturation. CONCLUSION: Our data indicate that secretion of miRNAs in EVs from the airway epithelium, in particular miR-34a, miR-92b, and miR-210, might be involved in the early development of a Th2 response in the airways and asthma.


Asunto(s)
Asma/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Mucosa Respiratoria/metabolismo , Adolescente , Asma/inducido químicamente , Diferenciación Celular/inmunología , Polaridad Celular/inmunología , Células Cultivadas , Niño , Células Dendríticas/inmunología , Femenino , Humanos , Interleucina-13/farmacología , Masculino , MicroARNs/genética , Lavado Nasal (Proceso) , Transducción de Señal/inmunología , Células Th2/inmunología , Transcriptoma
9.
Biophys J ; 117(10): 1805-1819, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31676134

RESUMEN

The activity of antimicrobial peptides (AMPs) has been investigated extensively using model membranes composed of phospholipids or lipopolysaccharides in aqueous environments. However, from a biophysical perspective, there is a large scientific interest regarding the direct interaction of membrane-active peptides with whole bacteria. Working with living bacteria limits the usability of experimental setups and the interpretation of the resulting data because of safety risks and the overlap of active and passive effects induced by AMPs. We killed or inactivated metabolic-active bacteria using γ-irradiation or sodium azide, respectively. Microscopy, flow cytometry, and SYTOX green assays showed that the cell envelope remained intact to a high degree at the minimal bactericidal dose. Furthermore, the tumor-necrosis-factor-α-inducing activity of the lipopolysaccharides and the chemical lipid composition was unchanged. Determining the binding capacity of AMPs to the bacterial cell envelope by calorimetry is difficult because of an overlapping of the binding heat and metabolic activities of the bacteria-induced by the AMPs. The inactivation of all active processes helps to decipher the complex thermodynamic information. From the isothermal titration calorimetry (ITC) results, we propose that the bacterial membrane potential (Δψ) is possibly an underestimated modulator of the AMP activity. The negative surface charge of the outer leaflet of the outer membrane of Gram-negative bacteria is already neutralized by peptide concentrations below the minimal inhibitory concentration. This proves that peptide aggregation on the bacterial membrane surface plays a decisive role in the degree of antimicrobial activity. This will not only enable many biophysical approaches for the investigation between bacteria and membrane-active peptides in the future but will also make it possible to compare biophysical parameters of active and inactive bacteria. This opens up new possibilities to better understand the active and passive interaction processes between AMPs and bacteria.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Rayos gamma , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Adsorción , Bacterias/ultraestructura , Fenómenos Biofísicos , Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de la radiación , Membrana Celular/ultraestructura , Potenciales de la Membrana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Termodinámica
10.
JCI Insight ; 52019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30998505

RESUMEN

Epidemiological findings indicate that coinfection with influenza viruses is associated with an increased risk of death in patients suffering from tuberculosis but the underlying pathomechanisms are not well understood. In this study, we demonstrate that influenza A virus (IAV) coinfection rapidly impairs control of Mycobacterium tuberculosis (Mtb) in C57BL/6 mice. IAV coinfection was associated with significantly increased bacterial loads, reduced survival and a substantial modulation of innate and adaptive immune defenses including an impaired onset and development of Mtb-specific CD4+ T cell responses and the accumulation of macrophages with increased arginase-1 production in the lungs. Our findings strongly indicate that IAV coinfection compromises the host's ability to control Mtb infection via the production of IL-10 which was rapidly induced upon viral infection. The blockade of IL-10 receptor signaling reduced the bacterial load in coinfected mice to a level comparable with that in Mtb-only-infected animals. Taken together, our data suggest that IL-10 signaling constitutes a major pathway that enhances susceptibility to Mtb during concurrent IAV infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Coinfección/inmunología , Inmunidad Innata/inmunología , Interleucina-10/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Interleucina-10/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Arginasa/metabolismo , Carga Bacteriana , Linfocitos T CD4-Positivos/inmunología , Subtipo H1N1 del Virus de la Influenza A , Interferón gamma/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Mycobacterium tuberculosis , Receptores de Interleucina-10/antagonistas & inhibidores , Tasa de Supervivencia , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Carga Viral
11.
FEBS J ; 286(8): 1576-1593, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30843356

RESUMEN

Increasing failure of conventional antibiotics to combat bacterial infections requires the urgent development of new antibacterial drugs; a promising class of new drugs based on antimicrobial peptides. Here, we studied the molecular interaction of polycationic synthetic antilipopolysaccharide peptides (SALPs) with various gram-negative and gram-positive bacteria, including resistant strains. The analysis of antimicrobial activity by conventional techniques and atomic force microscopy showed a strict dependence on amino acid (aa) sequences, with the type of amino acid, its position within the primary structure, and the sequence length being critical parameters. By monitoring lipopolysaccharide (LPS)- or bacteria-induced cytokine production in human mononuclear cells and whole blood, we found a direct link between the binding of the lead compound Pep19-2.5 to Salmonella enterica and the anti-inflammatory activity of the peptide. Thermodynamic analysis of Pep19-2.5 binding to the bacterial cell envelope showed an exothermic reaction with saturation characteristics, whereas small-angle X-ray scattering data indicated a direct attachment of Pep19-2.5 to the bacterial cell envelope. This binding preferentially takes place to the LPS outer monolayer, as evidenced by the change in the LPS acyl chain and phosphate vibrational bands seen by Fourier-transform infrared spectroscopy. We report here that the anti-inflammatory activity of Pep19-2.5 is not only connected with neutralization of cell-free bacterial toxins but also with a direct binding of the peptide to the outer leaflet of the bacterial outer membrane.


Asunto(s)
Antibacterianos/farmacología , Toxinas Bacterianas/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Calorimetría , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/microbiología , Radioisótopos de Cesio/toxicidad , Citocinas/metabolismo , Citometría de Flujo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Lipopolisacáridos/farmacología , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Péptidos/síntesis química , Salmonella enterica/efectos de los fármacos , Salmonella enterica/metabolismo , Salmonella enterica/efectos de la radiación , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Mucosal Immunol ; 11(4): 1168-1180, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29728641

RESUMEN

During Mycobacterium tuberculosis (Mtb) infection, mice lacking the IL-27R exhibit lower bacterial burdens but develop an immunopathological sequelae in comparison to wild-type mice. We here show that this phenotype correlates with an enhanced recruitment of antigen-specific CCR6+ CD4+ T cells and an increased frequency of IL-17A-producing CD4+ T cells. By comparing the outcome of Mtb infection in C57BL/6, IL-27R-deficient and IL-27R/IL-17A-double deficient mice, we observed that both the increased protection and elevated immunopathology are supported by IL-17A. Whereas IL-17A neither impacts the development of Tr1 cells nor the expression of PD1 and KLRG1 on T cells in IL-27R-deficient mice during infection, it regulates the presence of multifunctional T-cells in the lungs, co-expressing IFN-γ, IL-2 and TNF. Eventually, IL-17A supports Cxcl9, Cxcl10 and Cxcl13 expression and the granulomatous response in the lungs of infected IL-27R-deficient mice. Taken together, IL-17A contributes to protection in Mtb-infected IL-27R-deficient mice probably through a chemokine-mediated recruitment and strategic positioning of multifunctional T cells in granulomas. As IL-27 limits optimal antimycobacterial protection by inhibiting IL-17A production, blocking of IL-27R-mediated signaling may represent a strategy for improving vaccination and host-directed therapy in tuberculosis. However, because IL-27 also prevents IL-17A-mediated immunopathology, such intervention has to be tightly controlled.


Asunto(s)
Granuloma/inmunología , Interleucina-17/metabolismo , Pulmón/inmunología , Mycobacterium tuberculosis/fisiología , Receptores de Citocinas/metabolismo , Tuberculosis/inmunología , Animales , Proliferación Celular , Citocinas/metabolismo , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Interleucina-17/genética , Pulmón/microbiología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Citocinas/genética , Receptores de Interleucina
13.
Front Immunol ; 9: 495, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675017

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.


Asunto(s)
Células Dendríticas/inmunología , Ácidos Grasos/inmunología , Inmunidad Innata , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/inmunología , Animales , Células Dendríticas/microbiología , Células Dendríticas/patología , Ácidos Grasos/genética , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/genética , Células TH1/microbiología , Células TH1/patología , Tuberculosis/genética , Tuberculosis/patología
14.
J Allergy Clin Immunol ; 140(5): 1331-1338.e8, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28342912

RESUMEN

BACKGROUND: Peanut allergy is one of the most common and most severe food allergies in Western countries and its accurate diagnosis to prevent potential life-threatening allergic reactions is crucial. However, aqueous extracts used for routine diagnostic measurements are devoid of lipophilic allergens such as oleosins. We have recently succeeded in the isolation and purification of these unique proteins, and the present study evaluates their allergenic potential and clinical relevance. OBJECTIVE: We sought to assess allergenicity and sensitization prevalence of oleosins obtained from both raw and in-shell roasted peanuts. In addition, we tested the utilization of natural and recombinant oleosins for allergy diagnostic purposes. METHODS: Oleosin sensitization, prevalence, and impact of thermal processing were analyzed by immunoblot with sera from 52 peanut-allergic individuals displaying different clinical phenotypes. The application of natural and recombinant oleosins for allergy diagnostics was investigated by basophil activation test (BAT). IgE-binding epitopes were identified by oligopeptide microarray. RESULTS: Sensitization to oleosins was observed exclusively in peanut-allergic subjects suffering from severe systemic reactions. IgE-binding capacity of oleosins derived from in-shell roasted peanuts was increased as shown by immunoblot analysis and BAT. Both natural and recombinant molecules can be used to identify oleosin-sensitized patients by BAT. A linear epitope of Ara h 15 was determined that displays high similarity to other seed-derived oleosins. CONCLUSIONS: Oleosins are clinically relevant peanut allergens and most likely associated with severe allergic symptoms. In-shell roasting increases their allergenicity, which is consistent with the observation that most allergic reactions are in connection with roasted peanuts.


Asunto(s)
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Lipoproteínas/metabolismo , Hipersensibilidad al Cacahuete/inmunología , Péptidos/metabolismo , Adolescente , Adulto , Anciano , Alérgenos/inmunología , Antígenos de Plantas/inmunología , Arachis/inmunología , Niño , Mapeo Epitopo , Epítopos de Linfocito B/metabolismo , Femenino , Alemania , Humanos , Inmunoglobulina E/metabolismo , Lipoproteínas/inmunología , Masculino , Persona de Mediana Edad , Hipersensibilidad al Cacahuete/epidemiología , Prevalencia , Adulto Joven
15.
Oncotarget ; 8(5): 7964-7976, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-27974704

RESUMEN

Androgen deprivation therapy (ADT) is the main therapeutic option for advanced prostate cancer (PCa). After initial regression, most tumors develop into castration-resistant PCa (CRPC). Previously, we found the Mediator complex subunit MED15 to be overexpressed in CRPC and to correlate with clinical outcome. Therefore, we investigated whether MED15 is implicated in the signaling changes taking place during progression to CRPC. Immunohistochemistry (IHC) for MED15 on matched samples from the same patients before and after ADT reveals significantly increased MED15 expression after ADT in 72%. A validation cohort comprising samples before and after therapy confirmed our observations. Protein analysis for pAKT and pSMAD3 shows that MED15 correlates with PI3K and TGFß activities, respectively, and that hyper-activation of both pathways simultaneously correlates with highest levels of MED15. We further show that MED15 protein expression increases in LNCaP cells under androgen deprivation, and via EGF mediated PI3K activation. PI3K/mTOR and TGFß-receptor inhibition results in decreased MED15 expression. MED15 knockdown reduces LNCaP cell viability and induces apoptosis during androgen deprivation, while cell cycle is not affected. Collectively, MED15 overexpression arises during ADT via hyper-activation of PI3K/mTOR signaling, thus MED15 may serve as a predictive marker for response to PI3K/mTOR inhibitors. Furthermore, MED15 is potentially a therapeutic target for the treatment of CRPC.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Complejo Mediador/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Complejo Mediador/genética , Fosforilación , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína smad3/metabolismo , Transfección , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
16.
Sci Rep ; 6: 32927, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650379

RESUMEN

Protective immunity against Trypanosoma cruzi, the causative agent of Chagas disease, depends on the activation of macrophages by IFN-γ and IL-17A. In contrast, IL-10 prevents immunopathology. IL-22 belongs to the IL-10 cytokine family and has pleiotropic effects during host defense and immunopathology, however its role in protection and pathology during T. cruzi infection has not been analyzed yet. Therefore, we examined the role of IL-22 in experimental Chagas disease using the reticulotropic Tulahuen strain of T. cruzi. During infection, IL-22 is secreted by CD4-positive cells in an IL-23-dependent fashion. Infected IL-22(-/-) mice exhibited an increased production of IFN-γ and TNF and displayed enhanced numbers of activated IFN-γ-producing T cells in their spleens. Additionally, the production of IL-10 was increased in IL-22(-/-) mice upon infection. Macrophage activation and by association the parasitemia was not affected in the absence of IL-22. Apart from a transient increase in the body weight loss, infected IL-22(-/-) mice did not show any signs for an altered immunopathology during the first fourteen days of infection. Taken together, although IL-22 is expressed, it seems to play a minor role in protection and pathology during the acute systemic infection with the reticulotropic Tulahuen strain of T. cruzi.


Asunto(s)
Enfermedad de Chagas/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Interleucinas/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , Femenino , Inflamación , Interleucina-10/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Mutación , Parasitemia , Trypanosoma cruzi , Interleucina-22
17.
Biochim Biophys Acta ; 1838(10): 2739-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25016054

RESUMEN

Antimicrobial peptides (AMPs) are important components of the innate immune system of animals, plants, fungi and bacteria and are recently under discussion as promising alternatives to conventional antibiotics. We have investigated two cecropin-like synthetic peptides, Gm1, which corresponds to the natural overall uncharged Galleria mellonella native peptide and ΔGm1, a modified overall positively charged Gm1 variant. We have analysed these peptides for their potential to inhibit the endotoxin-induced secretion of tumour necrosis factor-α (TNF-α) from human mononuclear cells. Furthermore, in a conventional microbiological assay, the ability of these peptides to inhibit the growth of the rough mutant bacteria Salmonella enterica Minnesota R60 and the polymyxin B-resistant Proteus mirabilis R45 was investigated and atomic force microscopy (AFM) measurements were performed to characterize the morphology of the bacteria treated by the two peptides. We have also studied their cytotoxic properties in a haemolysis assay to clarify potential toxic effects. Our data revealed for both peptides minor anti-inflammatory (anti-endotoxin) activity, but demonstrated antimicrobial activity with differences depending on the endotoxin composition of the respective bacteria. In accordance with the antimicrobial assay, AFM data revealed a stronger morphology change of the R45 bacteria than for the R60. Furthermore, Gm1 had a stronger effect on the bacteria than ΔGm1, leading to a different morphology regarding indentations and coalescing of bacterial structures. The findings verify the biophysical measurements with the peptides on model systems. Both peptides lack any haemolytic activity up to an amount of 100µg/ml, making them suitable as new anti-infective agents.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Endotoxemia/tratamiento farmacológico , Proteínas de Insectos , Leucocitos Mononucleares/metabolismo , Mariposas Nocturnas/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Células Cultivadas , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Endotoxemia/patología , Femenino , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Leucocitos Mononucleares/patología , Lipopolisacáridos/toxicidad , Masculino , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Pathol ; 234(3): 338-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24979482

RESUMEN

Human tuberculosis (TB) is a leading global health threat and still constitutes a major medical challenge. However, mechanisms governing tissue pathology during post-primary TB remain elusive, partly because genetically or immunologically tractable animal models are lacking. In human TB, the demonstration of a large relative increase in interleukin (IL)-4 and IL-13 expression, which correlates with lung damage, indicates that a subversive T helper (TH)2 component in the response to Mycobacterium tuberculosis (Mtb) may undermine protective immunity and contribute to reactivation and tissue pathology. Up to now, there has been no clear evidence regarding whether IL-4/IL-13-IL-4 receptor-α (Rα)-mediated mechanisms may in fact cause reactivation and pathology. Unfortunately, the virtual absence of centrally necrotizing granulomas in experimental murine TB is associated with a poor induction of a TH2 immune response. We therefore hypothesize that, in mice, an increased production of IL-13 may lead to a pathology similar to human post-primary TB. In our study, aerosol Mtb infection of IL-13-over-expressing mice in fact resulted in pulmonary centrally necrotizing granulomas with multinucleated giant cells, a hypoxic rim and a perinecrotic collagen capsule, with an adjacent zone of lipid-rich, acid-fast bacilli-containing foamy macrophages, thus strongly resembling the pathology in human post-primary TB. Granuloma necrosis (GN) in Mtb-infected IL-13-over-expressing mice was associated with the induction of arginase-1-expressing macrophages. Indirect blockade of the endogenous arginase inhibitor l-hydroxyarginine in Mtb-infected wild-type mice resulted in a strong arginase expression and precipitated a similar pathology of GN. Together, we here introduce an experimental TB model that displays many features of centrally necrotizing granulomas in human post-primary TB and demonstrate that IL-13/IL-4Rα-dependent mechanisms leading to arginase-1 expression are involved in TB-associated tissue pathology.


Asunto(s)
Interleucina-13/metabolismo , Receptores de Interleucina-4/metabolismo , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Interleucina-13/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-4/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tuberculosis Pulmonar/inmunología
19.
Eur J Immunol ; 44(8): 2394-404, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24825529

RESUMEN

Phospholipases catalyze the cleavage of membrane phospholipids into smaller bioactive molecules. The lysosomal phospholipase A2 (LPLA2 ) is specifically expressed in macrophages. LPLA2 gene deletion in mice causes lysosomal phospholipid accumulation in tissue macrophages leading to phospholipidosis. This phenotype becomes most prominent in alveolar macrophages where LPLA2 contributes to surfactant phospholipid degradation. High expression of LPLA2 in alveolar macrophages prompted us to investigate its role in host immunity against the respiratory pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis. Here we report that adaptive immune responses to M. tuberculosis were impaired in LPLA2 deficient mice. Upon aerosol infection with M. tuberculosis, LPLA2 deficient mice showed enhanced mycobacterial counts but less lung immunopathology and pulmonary inflammatory responses. Compromised T-cell priming in the lymph nodes was associated with impaired pulmonary T-cell recruitment and activation. Together with reduced Th1 type cytokine production, these results indicate that LPLA2 is indispensable for the induction of adaptive T-cell immunity to M. tuberculosis. Taken together, we identified an unexpected and novel function of a lysosomal phospholipid-degrading enzyme.


Asunto(s)
Inmunidad Adaptativa/inmunología , Lisosomas/inmunología , Mycobacterium tuberculosis/inmunología , Fosfolipasas A2/inmunología , Tuberculosis Pulmonar/enzimología , Tuberculosis Pulmonar/inmunología , Animales , Citocinas/inmunología , Inflamación/inmunología , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/inmunología
20.
PLoS One ; 8(2): e57379, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460846

RESUMEN

Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB). Besides interleukin (IL-17)A, IL-22 represents a classical T helper (TH)17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb) is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Interferón gamma/metabolismo , Interleucinas/biosíntesis , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Granulocitos/metabolismo , Inmunidad/inmunología , Mediadores de Inflamación/metabolismo , Interferón gamma/biosíntesis , Interleucina-23/metabolismo , Interleucinas/deficiencia , Activación de Linfocitos/inmunología , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th17/inmunología , Tuberculosis/microbiología , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA