Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Neurobiol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023792

RESUMEN

Although most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease. If our hypothesis is tested and found to be true, it could have far-reaching implications for what we know about cerebral malaria pathogenesis.

2.
Nutrients ; 14(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405984

RESUMEN

Vitamin D regulates the master iron hormone hepcidin, and iron in turn alters vitamin D metabolism. Although vitamin D and iron deficiency are highly prevalent globally, little is known about their interactions in Africa. To evaluate associations between vitamin D and iron status we measured markers of iron status, inflammation, malaria parasitemia, and 25-hydroxyvitamin D (25(OH)D) concentrations in 4509 children aged 0.3 months to 8 years living in Kenya, Uganda, Burkina Faso, The Gambia, and South Africa. Prevalence of iron deficiency was 35.1%, and prevalence of vitamin D deficiency was 0.6% and 7.8% as defined by 25(OH)D concentrations of <30 nmol/L and <50 nmol/L, respectively. Children with 25(OH)D concentrations of <50 nmol/L had a 98% increased risk of iron deficiency (OR 1.98 [95% CI 1.52, 2.58]) compared to those with 25(OH)D concentrations >75 nmol/L. 25(OH)D concentrations variably influenced individual markers of iron status. Inflammation interacted with 25(OH)D concentrations to predict ferritin levels. The link between vitamin D and iron status should be considered in strategies to manage these nutrient deficiencies in African children.


Asunto(s)
Deficiencias de Hierro , Deficiencia de Vitamina D , Biomarcadores , Niño , Humanos , Inflamación/epidemiología , Hierro , Prevalencia , Sudáfrica , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Vitaminas
3.
BMC Med ; 20(1): 28, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35081974

RESUMEN

BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Adolescente , África Oriental/epidemiología , Teorema de Bayes , Niño , Preescolar , Hospitalización , Humanos , Lactante , Malaria Cerebral/epidemiología , Malaria Falciparum/epidemiología , Fenotipo
4.
Wellcome Open Res ; 7: 256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37786881

RESUMEN

Background: Antimicrobial resistance (AMR) is a global threat and is thought to be acute in low-and middle-income country (LMIC) settings, including in Kenya, but there is limited unbiased surveillance that can provide reliable estimates of its burden. Current efforts to build capacity for microbiology testing in Kenya are unlikely to result in systematic routine microbiological testing in the near term. Therefore, there is little prospect for microbiological support to inform clinical diagnoses nor for indicating the burden of AMR and for guiding empirical choice of antibiotics. Objective: We aim to build on an existing collaboration, the Clinical Information Network (CIN), to pilot microbiological surveillance using a 'hub-and-spoke' model where selected hospitals are linked to high quality microbiology research laboratories. Methods: Children admitted to paediatric wards of 12 participating hospitals will have a sample taken for blood culture at admission before antibiotics are started. Indication for blood culture will be a clinician's prescription of antibiotics. Samples will then be transported daily to the research laboratories for culture and antibiotic susceptibility testing and results relayed back to clinicians for patient management. The surveillance will take place for 6 months in each hospital. Separately, we shall conduct semi-structured interviews with frontline health workers to explore the feasibility and utility of this approach. We will also seek to understand how the availability of microbiology results might inform antibiotic stewardship, and as an interim step to the development of better national or regional laboratories linked to routine surveillance. Conclusions: If feasible, this approach is less costly and periodic 'hub-and-spoke' surveillance can be used to track AMR trends and to broadly guide empirical antibiotic guidance meaning it is likely to be more sustainable than establishing functional microbiological facilities in each hospital in a LMIC setting.

5.
Nat Med ; 27(4): 653-658, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33619371

RESUMEN

Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%.


Asunto(s)
Deficiencias de Hierro , Malaria/complicaciones , Absorción Fisiológica , Adolescente , África , Niño , Preescolar , Femenino , Geografía , Hepcidinas/metabolismo , Humanos , Lactante , Masculino , Análisis de la Aleatorización Mendeliana , Rasgo Drepanocítico/complicaciones
6.
Clin Infect Dis ; 73(1): 43-49, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32507899

RESUMEN

BACKGROUND: Iron deficiency (ID) and malaria are common causes of ill-health and disability among children living in sub-Saharan Africa. Although iron is critical for the acquisition of humoral immunity, little is known about the effects of ID on antibody responses to Plasmodium falciparum malaria. METHODS: The study included 1794 Kenyan and Ugandan children aged 0-7 years. We measured biomarkers of iron and inflammation, and antibodies to P. falciparum antigens including apical merozoite antigen 1 (anti-AMA-1) and merozoite surface antigen 1 (anti-MSP-1) in cross-sectional and longitudinal studies. RESULTS: The overall prevalence of ID was 31%. ID was associated with lower anti-AMA-1 and anti-MSP-1 antibody levels in pooled analyses adjusted for age, sex, study site, inflammation, and P. falciparum parasitemia (adjusted mean difference on a log-transformed scale (ß) -0.46; 95 confidence interval [CI], -.66, -.25 P < .0001; ß -0.33; 95 CI, -.50, -.16 P < .0001, respectively). Additional covariates for malaria exposure index, previous malaria episodes, and time since last malaria episode were available for individual cohorts. Meta-analysis was used to allow for these adjustments giving ß -0.34; -0.52, -0.16 for anti-AMA-1 antibodies and ß -0.26; -0.41, -0.11 for anti-MSP-1 antibodies. Low transferrin saturation was similarly associated with reduced anti-AMA-1 antibody levels. Lower AMA-1 and MSP-1-specific antibody levels persisted over time in iron-deficient children. CONCLUSIONS: Reduced levels of P. falciparum-specific antibodies in iron-deficient children might reflect impaired acquisition of immunity to malaria and/or reduced malaria exposure. Strategies to prevent and treat ID may influence antibody responses to malaria for children living in sub-Saharan Africa.


Asunto(s)
Anemia Ferropénica , Malaria Falciparum , Anemia Ferropénica/epidemiología , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Niño , Estudios Transversales , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum
7.
Wellcome Open Res ; 5: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32420456

RESUMEN

Background: Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-γ) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-γ gene (IFNG) are associated with increased IFN-γ production. We investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes of IFNG in relation to nutritional iron status and anaemia in Gambian children over a malaria season. Methods: We used previously available data from Gambian family trios to determine informative SNPs and then used the Agena Bioscience MassArray platform to type five SNPs from the IFNG gene in a cohort of 780 Gambian children aged 2-6 years. We also measured haemoglobin and biomarkers of iron status and inflammation at the start and end of a malaria season. Results: We identified five IFNG haplotype-tagging SNPs ( IFNG-1616 [rs2069705], IFNG+874 [rs2430561], IFNG+2200 [rs1861493], IFNG+3234 [rs2069718] and IFNG+5612 [rs2069728]). The IFNG+2200C [rs1861493] allele was associated with reduced haemoglobin concentrations (adjusted ß -0.44 [95% CI -0.75, -0.12]; Bonferroni adjusted P = 0.03) and a trend towards iron deficiency compared to wild-type at the end of the malaria season in multivariable models adjusted for potential confounders. A haplotype uniquely identified by IFNG+2200C was similarly associated with reduced haemoglobin levels and trends towards iron deficiency, anaemia and iron deficiency anaemia at the end of the malaria season in models adjusted for age, sex, village, inflammation and malaria parasitaemia. Conclusion: We found limited statistical evidence linking IFNG polymorphisms with a risk of developing iron deficiency and anaemia in Gambian children. More definitive studies are needed to investigate the effects of genetically influenced IFN-γ levels on the risk of iron deficiency and anaemia in children living in malaria-endemic areas.

8.
Malar J ; 19(1): 210, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552891

RESUMEN

BACKGROUND: Malaria transmission has recently fallen in many parts of Africa, but systematic descriptions of infection and disease across all age groups are rare. Here, an epidemiological investigation of parasite prevalence, the incidence of fevers associated with infection, severe hospitalized disease and mortality among children older than 6 months and adults on the Kenyan coast is presented. METHODS: A prospective fever surveillance was undertaken at 6 out-patients (OPD) health-facilities between March 2018 and February 2019. Four community-based, cross sectional surveys of fever history and infection prevalence were completed among randomly selected homestead members from the same communities. Paediatric and adult malaria at Kilifi county hospital was obtained for the 12 months period. Rapid Diagnostic Tests (CareStart™ RDT) to detect HRP2-specific to Plasmodium falciparum was used in the community and the OPD, and microscopy in the hospital. Crude and age-specific incidence rates were computed using Poisson regression. RESULTS: Parasite prevalence gradually increased from childhood, reaching 12% by 9 years of age then declining through adolescence into adulthood. The incidence rate of RDT positivity in the OPD followed a similar trend to that of infection prevalence in the community. The incidence of hospitalized malaria from the same community was concentrated among children aged 6 months to 4 years (i.e. 64% and 70% of all hospitalized and severe malaria during the 12 months of surveillance, respectively). Only 3.7% (12/316) of deaths were directly attributable to malaria. Malaria mortality was highest among children aged 6 months-4 years at 0.57 per 1000 person-years (95% CI 0.2, 1.2). Severe malaria and death from malaria was negligible above 15 years of age. CONCLUSION: Under conditions of low transmission intensity, immunity to disease and the fatal consequences of infection appear to continue to be acquired in childhood and faster than anti-parasitic immunity. There was no evidence of an emerging significant burden of severe malaria or malaria mortality among adults. This is contrary to current modelled approaches to disease burden estimation in Africa and has important implications for the targeting of infection prevention strategies based on chemoprevention or vector control.


Asunto(s)
Fiebre/epidemiología , Hospitalización/estadística & datos numéricos , Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Fiebre/etiología , Humanos , Incidencia , Lactante , Kenia/epidemiología , Malaria/mortalidad , Malaria/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Prospectivos , Adulto Joven
9.
BMC Med ; 18(1): 31, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32102669

RESUMEN

BACKGROUND: Iron deficiency (ID) is a major public health burden in African children and accurate prevalence estimates are important for effective nutritional interventions. However, ID may be incorrectly estimated in Africa because most measures of iron status are altered by inflammation and infections such as malaria. Through the current study, we have assessed different approaches to the prediction of iron status and estimated the burden of ID in African children. METHODS: We assayed iron and inflammatory biomarkers in 4853 children aged 0-8 years from Kenya, Uganda, Burkina Faso, South Africa, and The Gambia. We described iron status and its relationship with age, sex, inflammation, and malaria parasitemia. We defined ID using the WHO guideline (ferritin < 12 µg/L or < 30 µg/L in the presence of inflammation in children < 5 years old or < 15 µg/L in children ≥ 5 years old). We compared this with a recently proposed gold standard, which uses regression-correction for ferritin levels based on the relationship between ferritin levels, inflammatory markers, and malaria. We further investigated the utility of other iron biomarkers in predicting ID using the inflammation and malaria regression-corrected estimate as a gold standard. RESULTS: The prevalence of ID was highest at 1 year of age and in male infants. Inflammation and malaria parasitemia were associated with all iron biomarkers, although transferrin saturation was least affected. Overall prevalence of WHO-defined ID was 34% compared to 52% using the inflammation and malaria regression-corrected estimate. This unidentified burden of ID increased with age and was highest in countries with high prevalence of inflammation and malaria, where up to a quarter of iron-deficient children were misclassified as iron replete. Transferrin saturation < 11% most closely predicted the prevalence of ID according to the regression-correction gold standard. CONCLUSIONS: The prevalence of ID is underestimated in African children when defined using the WHO guidelines, especially in malaria-endemic populations, and the use of transferrin saturation may provide a more accurate approach. Further research is needed to identify the most accurate measures for determining the prevalence of ID in sub-Saharan Africa.


Asunto(s)
Anemia Ferropénica/epidemiología , África , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
10.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31591113

RESUMEN

Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over two decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers, nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine resistant transporter (crt)-76, multi-drug resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the re-introduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a re-emergence of CQ resistant parasites circulating below detectable levels or being reintroduced from other regions remains.

11.
Health Technol Assess ; 23(38): 1-92, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31373271

RESUMEN

BACKGROUND: Management of bone and joint infection commonly includes 4-6 weeks of intravenous (IV) antibiotics, but there is little evidence to suggest that oral (PO) therapy results in worse outcomes. OBJECTIVE: To determine whether or not PO antibiotics are non-inferior to IV antibiotics in treating bone and joint infection. DESIGN: Parallel-group, randomised (1 : 1), open-label, non-inferiority trial. The non-inferiority margin was 7.5%. SETTING: Twenty-six NHS hospitals. PARTICIPANTS: Adults with a clinical diagnosis of bone, joint or orthopaedic metalware-associated infection who would ordinarily receive at least 6 weeks of antibiotics, and who had received ≤ 7 days of IV therapy from definitive surgery (or start of planned curative treatment in patients managed non-operatively). INTERVENTIONS: Participants were centrally computer-randomised to PO or IV antibiotics to complete the first 6 weeks of therapy. Follow-on PO therapy was permitted in either arm. MAIN OUTCOME MEASURE: The primary outcome was the proportion of participants experiencing treatment failure within 1 year. An associated cost-effectiveness evaluation assessed health resource use and quality-of-life data. RESULTS: Out of 1054 participants (527 in each arm), end-point data were available for 1015 (96.30%) participants. Treatment failure was identified in 141 out of 1015 (13.89%) participants: 74 out of 506 (14.62%) and 67 out of 509 (13.16%) of those participants randomised to IV and PO therapy, respectively. In the intention-to-treat analysis, using multiple imputation to include all participants, the imputed risk difference between PO and IV therapy for definitive treatment failure was -1.38% (90% confidence interval -4.94% to 2.19%), thus meeting the non-inferiority criterion. A complete-case analysis, a per-protocol analysis and sensitivity analyses for missing data each confirmed this result. With the exception of IV catheter complications [49/523 (9.37%) in the IV arm vs. 5/523 (0.96%) in the PO arm)], there was no significant difference between the two arms in the incidence of serious adverse events. PO therapy was highly cost-effective, yielding a saving of £2740 per patient without any significant difference in quality-adjusted life-years between the two arms of the trial. LIMITATIONS: The OVIVA (Oral Versus IntraVenous Antibiotics) trial was an open-label trial, but bias was limited by assessing all potential end points by a blinded adjudication committee. The population was heterogenous, which facilitated generalisability but limited the statistical power of subgroup analyses. Participants were only followed up for 1 year so differences in late recurrence cannot be excluded. CONCLUSIONS: PO antibiotic therapy is non-inferior to IV therapy when used during the first 6 weeks in the treatment for bone and joint infection, as assessed by definitive treatment failure within 1 year of randomisation. These findings challenge the current standard of care and provide an opportunity to realise significant benefits for patients, antimicrobial stewardship and the health economy. FUTURE WORK: Further work is required to define the optimal total duration of therapy for bone and joint infection in the context of specific surgical interventions. Currently, wide variation in clinical practice suggests significant redundancy that likely contributes to the excess and unnecessary use of antibiotics. TRIAL REGISTRATION: Current Controlled Trials ISRCTN91566927. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 38. See the NIHR Journals Library website for further project information.


Treatment of bone and joint infection usually requires a long course of antibiotics. Doctors usually give these by injection through a vein (intravenously) for the first 4­6 weeks, rather than by mouth (orally). Although intravenous (IV) administration is more expensive and less convenient for patients, most doctors believe that it is more effective. However, there is little evidence to support this. The OVIVA (Oral Versus IntraVenous Antibiotics) trial set out to challenge this assumption. A total of 1054 patients from 26 UK hospitals were randomly allocated to receive the first 6 weeks of antibiotic therapy either intravenously or orally. Irrespective of the route of administration, the choice of antibiotic was left to an infection specialist so as to ensure that the most appropriate antibiotics were given. Patients were followed up for 1 year. Thirty-nine participants were lost to follow-up. Among the remaining 1015 participants, treatment failure occurred in 14.6% of those treated intravenously and 13.2% of those treated with PO antibiotics. This difference could easily have occurred by chance. Even if it was not by chance, the difference does not suggest that PO therapy is associated with worse outcomes than IV therapy and is too small to conclude that PO therapy is better than IV therapy. Participants in the IV group stayed in hospital longer and 10% of them had complications related to the IV line used for administering the antibiotics. In addition, their treatment was, overall, more expensive. We conclude that PO antibiotic therapy has no disadvantages for the early management of bone and joint infection. It is also cheaper and associated with fewer complications.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Enfermedades Óseas Infecciosas/tratamiento farmacológico , Esquema de Medicación , Artropatías/tratamiento farmacológico , Administración Intravenosa , Administración Oral , Adulto , Antibacterianos/efectos adversos , Infecciones Bacterianas/microbiología , Enfermedades Óseas Infecciosas/microbiología , Protocolos Clínicos , Análisis Costo-Beneficio/economía , Femenino , Humanos , Artropatías/microbiología , Masculino , Persona de Mediana Edad , Años de Vida Ajustados por Calidad de Vida , Evaluación de la Tecnología Biomédica , Resultado del Tratamiento , Reino Unido
12.
Clin Infect Dis ; 68(11): 1807-1814, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30219845

RESUMEN

BACKGROUND: It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS: We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS: At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS: ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION: ISRCTN32849447.


Asunto(s)
Hierro/sangre , Malaria/epidemiología , Oligoelementos/sangre , Niño , Preescolar , Monitoreo Epidemiológico , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Estudios Longitudinales , Masculino , Estado Nutricional , Prevalencia , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , Factores de Riesgo , Uganda/epidemiología
13.
Wellcome Open Res ; 4: 108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31930174

RESUMEN

Background: Bone and joint infections are becoming increasingly common and are usually treated with surgery and a course of intravenous antibiotics. However, there is no evidence to support the superiority of intravenous therapy and there is a growing body of literature showing that oral therapy is effective in treating these infections.Given this lack of evidence the clinical trial 'Oral Versus Intravenous Antibiotics' (OVIVA) was designed to assess the clinical and cost-effectiveness of intravenous versus oral antibiotics for the treatment of bone and joint infections, using a non-inferiority design. Clinical results from the trial indicate that oral antibiotics are non-inferior to intravenous antibiotics. The aim of this paper is to evaluate the cost-effectiveness of intravenous compared to oral antibiotics for treating bone and joint infections, using data from OVIVA. Methods: A cost-utility analysis was carried out, the main economic outcome measure was the quality adjusted life-year, measured using the EQ-5D-3L questionnaire, combined with costs to estimate cost-effectiveness over 12-months follow-up. Results: Results show that costs were significantly lower in the oral arm compared to the intravenous arm, a difference of £2,740 (95% confidence interval £1,488 to £3,992). Results of four sensitivity analyses were consistent with the base-case results. QALYs were marginally higher in the oral arm, however this difference was not statistically significant; -0.007 (95% confidence interval -0.045 to 0.031). Conclusions: Treating patients with bone and joint infections for the first six weeks of therapy with oral antibiotics is both less costly and does not result in detectable differences in quality of life compared to treatment with intravenous antibiotics. Adopting a practice of treating bone and joint infections with oral antibiotics early in the course of therapy could potentially save the UK National Health Service over £17 million annually.

14.
PLoS One ; 13(12): e0208328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30540808

RESUMEN

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified Vaccinia Virus Ankara (MVA) vectored vaccines is a strategy previously shown to provide substantial protective efficacy against P. falciparum infection in United Kingdom adult Phase IIa sporozoite challenge studies (approximately 20-25% sterile protection with similar numbers showing clear delay in time to patency), and greater point efficacy in a trial in Kenyan adults. METHODOLOGY: We conducted the first Phase IIb clinical trial assessing the safety, immunogenicity and efficacy of ChAd63 MVA ME-TRAP in 700 healthy malaria exposed children aged 5-17 months in a highly endemic malaria transmission area of Burkina Faso. RESULTS: ChAd63 MVA ME-TRAP was shown to be safe and immunogenic but induced only moderate T cell responses (median 326 SFU/106 PBMC (95% CI 290-387)) many fold lower than in previous trials. No significant efficacy was observed against clinical malaria during the follow up period, with efficacy against the primary endpoint estimate by proportional analysis being 13.8% (95%CI -42.4 to 47.9) at sixth month post MVA ME-TRAP and 3.1% (95%CI -15.0 to 18.3; p = 0.72) by Cox regression. CONCLUSIONS: This study has confirmed ChAd63 MVA ME-TRAP is a safe and immunogenic vaccine regimen in children and infants with prior exposure to malaria. But no significant protective efficacy was observed in this very highly malaria-endemic setting. TRIAL REGISTRATION: ClinicalTrials.gov NCT01635647. Pactr.org PACTR201208000404131.


Asunto(s)
Vacunas contra la Malaria/uso terapéutico , Adenovirus de los Simios/genética , Método Doble Ciego , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Lactante , Estimación de Kaplan-Meier , Kenia , Leucocitos Mononucleares/inmunología , Malaria/inmunología , Malaria/prevención & control , Masculino , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Linfocitos T/metabolismo , Virus Vaccinia/genética
15.
J Clin Microbiol ; 56(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209185

RESUMEN

Current guidelines recommend collection of multiple tissue samples for diagnosis of prosthetic joint infections (PJI). Sonication of explanted devices has been proposed as a potentially simpler alternative; however, reported microbiological yield varies. We evaluated sonication for diagnosis of PJI and other orthopedic device-related infections (DRI) at the Oxford Bone Infection Unit between October 2012 and August 2016. We compared the performance of paired tissue and sonication cultures against a "gold standard" of published clinical and composite clinical and microbiological definitions of infection. We analyzed explanted devices and a median of five tissue specimens from 505 procedures. Among clinically infected cases the sensitivity of tissue and sonication culture was 69% (95% confidence interval, 63 to 75) and 57% (50 to 63), respectively (P < 0.0001). Tissue culture was more sensitive than sonication for both PJI and other DRI, irrespective of the infection definition used. Tissue culture yield was higher for all subgroups except less virulent infections, among which tissue and sonication culture yield were similar. The combined sensitivity of tissue and sonication culture was 76% (70 to 81) and increased with the number of tissue specimens obtained. Tissue culture specificity was 97% (94 to 99), compared with 94% (90 to 97) for sonication (P = 0.052) and 93% (89 to 96) for the two methods combined. Tissue culture is more sensitive and may be more specific than sonication for diagnosis of orthopedic DRI in our setting. Variable methodology and case mix may explain reported differences between centers in the relative yield of tissue and sonication culture. Culture yield was highest for both methods combined.


Asunto(s)
Artritis Infecciosa/diagnóstico , Biopsia , Infecciones Relacionadas con Prótesis/diagnóstico , Sonicación , Anciano , Artritis Infecciosa/microbiología , Artritis Infecciosa/patología , Técnicas Bacteriológicas/normas , Remoción de Dispositivos , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prótesis e Implantes/efectos adversos , Prótesis e Implantes/microbiología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/patología , Sensibilidad y Especificidad , Manejo de Especímenes/normas
16.
PLoS One ; 11(12): e0167951, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27978537

RESUMEN

Malaria transmission is in decline in some parts of Africa, partly due to the scaling up of control measures. If the goal of elimination is to be achieved, additional control measures including an effective and durable vaccine will be required. Studies utilising the prime-boost approach to deliver viral vectors encoding the pre-erythrocytic antigen ME-TRAP (multiple epitope thrombospondin-related adhesion protein) have shown promising safety, immunogenicity and efficacy in sporozoite challenge studies. More recently, a study in Kenyan adults, similar to that reported here, showed substantial efficacy against P. falciparum infection. One hundred and twenty healthy male volunteers, living in a malaria endemic area of Senegal were randomised to receive either the Chimpanzee adenovirus (ChAd63) ME-TRAP as prime vaccination, followed eight weeks later by modified vaccinia Ankara (MVA) also encoding ME-TRAP as booster, or two doses of anti-rabies vaccine as a comparator. Prior to follow-up, antimalarials were administered to clear parasitaemia and then participants were monitored by PCR for malaria infection for eight weeks. The primary endpoint was time-to-infection with P. falciparum malaria, determined by two consecutive positive PCR results. Secondary endpoints included adverse event reporting, measures of cellular and humoral immunogenicity and a meta-analysis of combined vaccine efficacy with the parallel study in Kenyan adults.We show that this pre-erythrocytic malaria vaccine is safe and induces significant immunogenicity, with a peak T-cell response at seven days after boosting of 932 Spot Forming Cells (SFC)/106 Peripheral Blood Mononuclear Cells(PBMC) compared to 57 SFC/ 106 PBMCs in the control group. However, a vaccine efficacy was not observed: 12 of 57 ME-TRAP vaccinees became PCR positive during the intensive monitoring period as compared to 13 of the 58 controls (P = 0.80). This trial confirms that vaccine efficacy against malaria infection in adults may be rapidly assessed using this efficient and cost-effective clinical trial design. Further efficacy evaluation of this vectored candidate vaccine approach in other malaria transmission settings and age-de-escalation into the main target age groups for a malaria vaccine is in progress.


Asunto(s)
Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adulto , Antimaláricos/uso terapéutico , Humanos , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/genética , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Senegal , Vacunación/efectos adversos , Vacunación/métodos , Virus Vaccinia/genética
17.
Mol Ther ; 24(8): 1470-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27109630

RESUMEN

Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants. We enrolled 138 Gambian and Burkinabe children in four different age-groups: 2-6 years old in The Gambia; 5-17 months old in Burkina Faso; 5-12 months old, and also 10 weeks old, in The Gambia; and evaluated the safety and immunogenicity of Chimpanzee Adenovirus 63 Modified Vaccinia Ankara ME-TRAP heterologous prime-boost immunization. The vaccines were well tolerated in all age groups with no vaccine-related serious adverse events. T-cell responses to vaccination peaked 7 days after boosting with Modified Vaccinia Ankara, with T-cell responses highest in 10 week-old infants. Heterologous prime-boost immunization with Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara ME-TRAP was well tolerated in infants and children, inducing strong T-cell responses. We identify an approach that induces potent T-cell responses in infants, which may be useful for preventing other infectious diseases requiring cellular immunity.


Asunto(s)
Adenovirus de los Simios , Epítopos , Vectores Genéticos , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Virus Vaccinia , África Occidental/epidemiología , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Niño , Preescolar , Ensayo de Immunospot Ligado a Enzimas , Epítopos/inmunología , Gambia , Vectores Genéticos/efectos adversos , Humanos , Inmunización Secundaria , Lactante , Recién Nacido , Malaria/epidemiología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Evaluación de Resultado en la Atención de Salud
18.
Trials ; 16: 583, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26690812

RESUMEN

BACKGROUND: Bone and joint infection in adults arises most commonly as a complication of joint replacement surgery, fracture fixation and diabetic foot infection. The associated morbidity can be devastating to patients and costs the National Health Service an estimated £20,000 to £40,000 per patient. Current standard of care in most UK centres includes a prolonged course (4-6 weeks) of intravenous antibiotics supported, if available, by an outpatient parenteral antibiotic therapy service. Intravenous therapy carries with it substantial risks and inconvenience to patients, and the antibiotic-related costs are approximately ten times that of oral therapy. Despite this, there is no evidence to suggest that oral therapy results in inferior outcomes. We hypothesise that, by selecting oral agents with high bioavailability, good tissue penetration and activity against the known or likely pathogens, key outcomes in patients managed primarily with oral therapy are non-inferior to those in patients treated by intravenous therapy. METHODS: The OVIVA trial is a parallel group, randomised (1:1), un-blinded, non-inferiority trial conducted in thirty hospitals across the UK. Eligible participants are adults (>18 years) with a clinical syndrome consistent with a bone, joint or metalware-associated infection who have received ≤7 days of intravenous antibiotic therapy from the date of definitive surgery (or the start of planned curative therapy in patients treated without surgical intervention). Participants are randomised to receive either oral or intravenous antibiotics, selected by a specialist infection physician, for the first 6 weeks of therapy. The primary outcome measure is definite treatment failure within one year of randomisation, as assessed by a blinded endpoint committee, according to pre-defined microbiological, histological and clinical criteria. Enrolling 1,050 subjects will provide 90 % power to demonstrate non-inferiority, defined as less than 7.5 % absolute increase in treatment failure rate in patients randomised to oral therapy as compared to intravenous therapy (one-sided alpha of 0.05). DISCUSSION: If our results demonstrate non-inferiority of orally administered antibiotic therapy, this trial is likely to facilitate a dramatically improved patient experience and alleviate a substantial financial burden on healthcare services. TRIAL REGISTRATION: ISRCTN91566927 - 14/02/2013.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Enfermedades Óseas Infecciosas/tratamiento farmacológico , Artropatías/tratamiento farmacológico , Administración Intravenosa , Administración Oral , Antibacterianos/efectos adversos , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Enfermedades Óseas Infecciosas/diagnóstico , Enfermedades Óseas Infecciosas/microbiología , Protocolos Clínicos , Esquema de Medicación , Humanos , Artropatías/diagnóstico , Artropatías/microbiología , Proyectos de Investigación , Factores de Tiempo , Resultado del Tratamiento , Reino Unido
19.
Sci Transl Med ; 7(286): 286re5, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25947165

RESUMEN

Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016).


Asunto(s)
Adenovirus de los Simios/inmunología , Esquemas de Inmunización , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/inmunología , Adulto , Algoritmos , Animales , Epítopos/inmunología , Genotipo , Humanos , Estimación de Kaplan-Meier , Kenia , Masculino , Pan troglodytes , Plasmodium falciparum , Reacción en Cadena de la Polimerasa , Modelos de Riesgos Proporcionales , Adulto Joven
20.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25336730

RESUMEN

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Epítopos/inmunología , Femenino , Vectores Genéticos , Humanos , Interferón gamma/inmunología , Hígado/virología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA