Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Blood ; 139(16): 2512-2522, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35108370

RESUMEN

Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad Granulomatosa Crónica , Activación Enzimática , Infecciones por Virus de Epstein-Barr/metabolismo , Enfermedad Granulomatosa Crónica/genética , Herpesvirus Humano 4/metabolismo , Humanos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación
2.
J Leukoc Biol ; 97(6): 1081-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25877926

RESUMEN

Neutrophils play a key role in host defense against invading pathogens by releasing toxic agents, such as ROS and antimicrobial peptides. Human neutrophils express several TLRs that recognize a variety of microbial motifs. The interaction between TLR and their agonists is believed to help neutrophils to recognize and to kill pathogens efficiently by increasing their activation, a process called priming. However, excessive activation can induce tissue injury and thereby, contribute to inflammatory disorders. Agonists that activate TLR7 and TLR8 induce priming of neutrophil ROS production; however, which receptor is involved in this process has not been elucidated. In this study, we show that the selective TLR8 agonist, CL075 (3M002), induced a dramatic increase of fMLF-stimulated NOX2 activation, whereas the selective TLR7 agonist, loxoribine, failed to induce any priming effect. Interestingly, CL075, but not loxoribine, induced the phosphorylation of the NOX2 cytosolic component p47phox on several serines and the phosphorylation of p38MAPK and ERK1/2. The inhibitor of p38MAPK completely blocked CL075-induced phosphorylation of p47phox Ser345. Moreover, CL075, but not loxoribine, induced the activation of the proline isomerase Pin1, and juglone, a Pin1 inhibitor, prevented CL075-mediated priming of fMLF-induced superoxide production. These results indicate that TLR8, but not TLR7, is involved in priming of human neutrophil ROS production by inducing the phosphorylation of p47phox and p38MAPK and that Pin1 is also involved in this process.


Asunto(s)
NADPH Oxidasas/metabolismo , Neutrófilos/enzimología , Especies Reactivas de Oxígeno/agonistas , Receptor Toll-Like 8/agonistas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Activación Enzimática , Regulación de la Expresión Génica , Guanosina/análogos & derivados , Guanosina/farmacología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Peptidilprolil Isomerasa de Interacción con NIMA , Naftoquinonas/farmacología , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Fosforilación , Cultivo Primario de Células , Quinolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tiazoles/farmacología , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
3.
Haematologica ; 98(10): 1517-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23975181

RESUMEN

Myeloproliferative disorders are associated with increased risk of thrombosis and vascular complications. The pathogenesis of these complications is not completely known. Reactive oxygen species produced by the neutrophil NADPH oxidase could have a role in this process. The aim of this study was to evaluate reactive oxygen species production by neutrophils of myeloproliferative disorder patients. Patients with or without the JAK2 V617F mutation were characterized. Reactive oxygen species production was assessed by chemiluminescence, and phosphorylation of the NADPH oxidase subunit p47phox was analyzed by Western blots. In a comparison of controls and myeloproliferative disorder patients without the JAK2 V617F mutation, reactive oxygen species production by neutrophils from patients with the JAK2 V617F mutation was dramatically increased in non-stimulated and in stimulated conditions. This increase was associated with increased phosphorylation of the p47phox on Ser345 and of the uspstream kinase ERK1/2. In neutrophils from healthy donors, JAK2 can be activated by GM-CSF. GM-CSF-induced p47phox phosphorylation and priming of reactive oxygen species production are inhibited by the selective JAK2 inhibitors AG490 and lestaurtinib (CEP-701), supporting a role for JAK2 in the upregulation of NADPH oxidase activation. These findings show an increase in reactive oxygen species production and p47phox phosphorylation in neutrophils from myeloproliferative disorder patients with the JAK2 V617F mutation, and demonstrate that JAK2 is involved in GM-CSF-induced NADPH oxidase hyperactivation. As neutrophil hyperactivation could be implicated in the thrombophilic status of patients with myeloproliferative disorders, aberrant activation of JAK2 V617F, leading to excessive neutrophil reactive oxygen species production might play a role in this setting.


Asunto(s)
Janus Quinasa 2/genética , Mutación/genética , Trastornos Mieloproliferativos/genética , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Mieloproliferativos/metabolismo , Fosforilación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA