Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076897

RESUMEN

Breast cancer entails intricate alterations in genome organization and expression. However, how three-dimensional (3D) chromatin structure changes in the progression from a normal to a breast cancer malignant state remains unknown. To address this, we conducted an analysis combining Hi-C data with lamina-associated domains (LADs), epigenomic marks, and gene expression in an in vitro model of breast cancer progression. Our results reveal that while the fundamental properties of topologically associating domains (TADs) remain largely stable, significant changes occur in the organization of compartments and subcompartments. These changes are closely correlated with alterations in the expression of oncogenic genes. We also observe a restructuring of TAD-TAD interactions, coinciding with a loss of spatial compartmentalization and radial positioning of the 3D genome. Notably, we identify a previously unrecognized interchromosomal insertion event, wherein a locus on chromosome 8 housing the MYC oncogene is inserted into a highly active subcompartment on chromosome 10. This insertion leads to the formation of de novo enhancer contacts and activation of the oncogene, illustrating how structural variants can interact with the 3D genome to drive oncogenic states. In summary, our findings provide evidence for the degradation of genome organization at multiple scales during breast cancer progression revealing novel relationships between genome 3D structure and oncogenic processes.

2.
Cells ; 11(11)2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35681541

RESUMEN

Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer.


Asunto(s)
Heterocromatina , Neoplasias , Animales , Núcleo Celular , Mamíferos/genética , Neoplasias/genética , Membrana Nuclear , Lámina Nuclear
3.
Front Oncol ; 11: 647269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277402

RESUMEN

Oncogene alternative splicing events can create distinct functional transcripts that offer new candidate prognostic biomarkers for breast cancer. ZNF217 is a well-established oncogene but its exon 4-skipping isoform (ZNF217-ΔE4) has never been investigated in terms of clinical or biological relevance. Using in silico RNA-seq and RT-qPCR analyses, we demonstrated for the first time the existence of ZNF217-ΔE4 transcripts in primary breast tumors, and a positive correlation between ZNF217-ΔE4 mRNA levels and those of the wild-type oncogene (ZNF217-WT). A pilot retrospective analysis revealed that, in the Luminal subclass, the combination of the two ZNF217 variants (the ZNF217-ΔE4-WT gene-expression signature) provided more information than the mRNA expression levels of each isoform alone. Ectopic overexpression of ZNF217-ΔE4 in breast cancer cells promoted an aggressive phenotype and an increase in ZNF217-WT expression levels that was inversely correlated with DNA methylation of the ZNF217 gene. This study provides new insights into the possible role of the ZNF217-ΔE4 splice variant in breast cancer and suggests a close interplay between the ZNF217-WT and ZNF217-ΔE4 isoforms. Our data suggest that a dual signature combining the expression levels of these two isoforms may serve as a novel prognostic biomarker allowing better stratification of breast cancers with good prognosis and aiding clinicians in therapeutic decisions.

4.
Nat Cell Biol ; 22(7): 856-867, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601372

RESUMEN

The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.


Asunto(s)
Núcleo Celular/patología , Cromatina/metabolismo , Aberraciones Cromosómicas , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inestabilidad Genómica , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos
5.
Front Pharmacol ; 10: 667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275146

RESUMEN

Breast cancer with bone metastasis is essentially incurable with current anticancer therapies. The bone morphogenetic protein (BMP) pathway is an attractive therapeutic candidate, as it is involved in the bone turnover and in cancer cell formation and their colonization of distant organs such as the bone. We previously reported that in breast cancer cells, the ZNF217 oncogene drives BMP pathway activation, increases the metastatic growth rate in the bone, and accelerates the development of severe osteolytic lesions in mice. In the present study, we aimed at investigating the impact of the LDN-193189 compound, a potent inhibitor of the BMP type I receptor, on metastasis development in vivo. ZNF217-revLuc cells were injected into the left ventricle of nude mice (n = 16) while control mice (n = 13) were inoculated with control pcDNA6-revLuc cells. Mice from each group were treated or not with LDN-193189 for 35 days. We found that systemic LDN-193189 treatment of mice significantly enhanced metastasis development, by increasing both the number and the size of metastases. In pcDNA6-revLuc-injected mice, LDN-193189 also affected the kinetics of metastasis emergence. Altogether, these data suggest that in vivo, LDN-193189 might affect the interaction between breast cancer cells and the bone environment, favoring the emergence and development of multiple metastases. Hence, our report highlights the importance of the choice of drugs and therapeutic strategies used in the management of bone metastases.

6.
J Pathol ; 242(1): 73-89, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28207159

RESUMEN

Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Transactivadores/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Óseas/metabolismo , Remodelación Ósea/genética , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , ARN Mensajero/genética , ARN Neoplásico/genética , Transducción de Señal/genética , Transactivadores/biosíntesis , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA