Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Epigenetics ; 16(1): 28, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355645

RESUMEN

BACKGROUND: E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS: In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS: Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Enfermedad de Crohn , Humanos , Metilación de ADN , Leucocitos Mononucleares/metabolismo , Enfermedad de Crohn/genética , Islas de CpG , Cadherinas/genética , Neoplasias Colorrectales/genética , Antígenos CD/genética , Antígenos CD/metabolismo
2.
Gene Ther ; 29(7-8): 441-448, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34599290

RESUMEN

Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1Awt/mut) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1Awt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1Awt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.

3.
Clin Epigenetics ; 10: 57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713392

RESUMEN

Background: There are many reasons to think that epigenetics is a key determinant of fetal growth variability across the normal population. Since IGF1 and INS genes are major determinants of intrauterine growth, we examined the methylation of selected CpGs located in the regulatory region of these two genes. Methods: Cord blood was sampled in 159 newborns born to mothers prospectively followed during their pregnancy. A 142-item questionnaire was filled by mothers at inclusion, during the last trimester of the pregnancy and at the delivery. The methylation of selected CpGs located in the promoters of the IGF1 and INS genes was measured in cord blood mononuclear cells collected at birth using bisulfite-PCR-pyrosequencing. Results: Methylation at IGF1 CpG-137 correlated negatively with birth length (r = 0.27, P = 3.5 × 10-4). The same effect size was found after adjustment for maternal age, parity, and smoking: a 10% increase in CpG-137 methylation was associated with a decrease of length by 0.23 SDS. Conclusion: The current results suggest that the methylation of IGF1 CpG-137 contributes to the individual variation of fetal growth by regulating IGF1 expression in fetal tissues.


Asunto(s)
Metilación de ADN , Desarrollo Fetal/genética , Factor I del Crecimiento Similar a la Insulina/genética , Análisis de Secuencia de ADN/métodos , Adulto , Islas de CpG , Epigénesis Genética , Femenino , Sangre Fetal/química , Sangre Fetal/citología , Estudios de Asociación Genética , Humanos , Recién Nacido , Masculino , Edad Materna , Embarazo , Tercer Trimestre del Embarazo , Regiones Promotoras Genéticas , Encuestas y Cuestionarios , Adulto Joven
4.
Sci Rep ; 7: 46311, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387357

RESUMEN

Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the "IRS1 target genes" and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Obesidad Mórbida/genética , Adolescente , Estudios de Casos y Controles , Niño , Islas de CpG , Femenino , Genoma Humano , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Masculino
5.
Clin Epigenetics ; 7: 22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789079

RESUMEN

BACKGROUND: Even if genetics play an important role, individual variation in stature remains unexplained at the molecular level. Indeed, genome-wide association study (GWAS) have revealed hundreds of variants that contribute to the variability of height but could explain only a limited part of it, and no single variant accounts for more than 0.3% of height variance. At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits, an emerging challenge in humans, has not been attempted for height. Since insulin-like growth factor 1 (IGF1) controls postnatal growth, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene is a potential epigenetic contributor to the individual variation in circulating IGF1 and stature in growing children. RESULTS: Child height was closely correlated with serum IGF1. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. The highest association was for CG-137 methylation, which contributed 13% to the variance of height and 10% to serum IGF1. CG methylation (studied in children undergoing surgery) was approximately 50% lower in liver and growth plates, indicating that the IGF1 promoters are tissue-differentially methylated regions (t-DMR). CG methylation was inversely correlated with the transcriptional activity of the P2 promoter in mononuclear blood cells and in transfection experiments, suggesting that the observed association of methylation with the studied traits reflects true biological causality. CONCLUSIONS: Our observations introduce epigenetics among the individual determinants of child growth and serum IGF1. The P2 promoter of the IGF1 gene is the first epigenetic quantitative trait locus (QTL(epi)) reported in humans. The CG methylation of the P2 promoter takes place among the multifactorial factors explaining the variation in human stature.

6.
Hepatology ; 52(3): 1046-59, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20597071

RESUMEN

UNLABELLED: The cannabinoid receptor 2 (CB2) plays a pleiotropic role in innate immunity and is a crucial mediator of liver disease. In this study, we investigated the impact of CB2 receptors on the regenerative process associated with liver injury. Following acute hepatitis induced by carbon tetrachloride (CCl(4)), CB2 was induced in the nonparenchymal cell fraction and remained undetectable in hepatocytes. Administration of CCl(4) to CB2(-/-) mice accelerated liver injury, as shown by increased alanine/aspartate aminotransferase levels and hepatocyte apoptosis, and delayed liver regeneration, as reflected by a retarded induction of hepatocyte proliferating cell nuclear antigen expression; proliferating cell nuclear antigen induction was also delayed in CB2(-/-) mice undergoing partial hepatectomy. Conversely, following treatment with the CB2 agonist JWH-133, CCl(4)-treated WT mice displayed reduced liver injury and accelerated liver regeneration. The CCl(4)-treated CB2(-/-) mice showed a decrease in inducible nitric oxide synthase and tumor necrosis factor-alpha expression, and administration of the nitric oxide donor moldomine (SIN-1) to these animals reduced hepatocyte apoptosis, without affecting liver regeneration. Impaired liver regeneration was consecutive to an interleukin-6 (IL-6)-mediated decrease in matrix metalloproteinase 2 (MMP-2) activity. Indeed, CCl(4)-treated CB2(-/-) mice displayed lower levels of hepatic IL-6 messenger RNA and increased MMP-2 activity. Administration of IL-6 to these mice decreased MMP-2 activity and improved liver regeneration, without affecting hepatocyte apoptosis. Accordingly, administration of the MMP inhibitor CTTHWGFTLC to CCl(4)-treated CB2(-/-) mice improved liver regeneration. Finally, in vitro studies demonstrated that incubation of hepatic myofibroblasts with JWH-133 increased tumor necrosis factor-alpha and IL-6 and decreased MMP-2 expressions. CONCLUSION: CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts. These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Regeneración Hepática/fisiología , Comunicación Paracrina/fisiología , Receptor Cannabinoide CB2/fisiología , Alanina Transaminasa/metabolismo , Animales , Apoptosis/fisiología , Aspartato Aminotransferasas/metabolismo , Cannabinoides/farmacología , Tetracloruro de Carbono/efectos adversos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Hepatectomía , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Interleucina-6/metabolismo , Regeneración Hepática/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Cell Biochem ; 102(5): 1271-80, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17492661

RESUMEN

Mast cells proliferate in vivo in areas of active fibrosis, during parasite infestations, in response to repeated immediate hypersensitivity reactions and in patients with mastocytosis. We investigated how progesterone reduces the proliferation of HMC-1(560) mast cells that proliferate spontaneously in culture. Cells were incubated with 1 microM to 1 nM progesterone for 24-48 h. Progesterone (1 microM) reduced the spontaneous proliferation of HMC-1(560) mast cells to half that of cells cultured without hormone. [(3)H] thymidine incorporation was only 50% of control; there were fewer cells in G2/M and more cells in G0/G1. The amounts of phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK proteins were also reduced. In contrast progesterone had no effect on MAP kinase-phosphatase-1. The Raf/MAPK pathway, which depends on Src kinase activity, is implicated in the control of cell proliferation. HMC-1(560) cells incubated with the tyrosine kinase inhibitor PP1 proliferated more slowly than controls and had less phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK. The Csk homologous kinase (CHK), an endogenous inhibitor of Src protein tyrosine kinases, was also enhanced in progesterone-treated cells. In contrast, progesterone had no effect on the growth of cells transfected with siRNA CHK. We conclude that progesterone increases the amount of csk homologous kinase, which in turn reduces HMC-1(560) mast cell proliferation. This effect parallels decreases in the phosphorylated forms of Raf-1 and p42/44 MAPK, as their production depends on Src kinase activity.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Mastocitos/efectos de los fármacos , Mastocitos/enzimología , Progesterona/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Anexina A5/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
8.
Am J Physiol Endocrinol Metab ; 292(5): E1410-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17468394

RESUMEN

Mast cell recruitment is implicated in many physiological functions and several diseases. It depends on microenvironmental factors, including hormones. We have investigated the effect of progesterone on the migration of HMC-1(560) mast cells toward CXCL12, a chemokine that controls the migration of mast cells into tissues. HMC-1(560) mast cells were incubated with 1 nM to 1 microM progesterone for 24 h. Controls were run without progesterone. Cell migration toward CXCL12 was monitored with an in vitro assay, and statistical analysis of repeated experiments revealed that progesterone significantly reduced cell migration without increasing the number of apoptotic cells (P = 0.0084, n = 7). Differences between progesterone-treated and untreated cells were significant at 1 microM (P < 0.01, n = 7). Cells incubated with 1 microM progesterone showed no rearrangment of actin filaments in response to CXCL12. Progesterone also reduced the calcium response to CXCL12 and Akt phosphorylation. Cells incubated with progesterone had one-half the control concentrations of CXCR4 (mRNA, total protein, and membrane-bound protein). Progesterone also inhibited the migration of HMC-1(560) cells transfected with hPR-B-pSG5 plasmid, which contained 2.5 times as much PR-B as the control. These transfected cells responded differently (P < 0.05, n = 5) from untreated cells to 1 nM progesterone. We conclude that progesterone reduces mast cell migration toward CXCL12 and that CXCR4 may be a progesterone target in mast cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocinas CXC/metabolismo , Mastocitos/efectos de los fármacos , Progesterona/farmacología , Receptores CXCR4/metabolismo , Actinas/metabolismo , Androstadienos/farmacología , Western Blotting , Calcio/metabolismo , Movimiento Celular/fisiología , Quimiocina CXCL12 , Quimiocinas CXC/biosíntesis , Quimiocinas CXC/genética , Citometría de Flujo , Humanos , Mastocitos/citología , Mastocitos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores CXCR4/biosíntesis , Receptores CXCR4/genética , Receptores de Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA