Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 18(10): e1010906, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306280

RESUMEN

As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Poliovirus , Humanos , Enterovirus/metabolismo , Biotinilación , Poliovirus/fisiología , Replicación Viral , Proteínas Virales/metabolismo , Poliproteínas/metabolismo , Antivirales/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo
2.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758932

RESUMEN

Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Enfermedad de Newcastle , Vacunas Virales , Animales , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Enfermedad de Newcastle/genética , Transgenes
3.
Viruses ; 13(8)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34452452

RESUMEN

The capsid precursor P1 constitutes the N-terminal part of the enterovirus polyprotein. It is processed into VP0, VP3, and VP1 by the viral proteases, and VP0 is cleaved autocatalytically into VP4 and VP2. We observed that poliovirus VP0 is recognized by an antibody against a cellular autophagy protein, LC3A. The LC3A-like epitope overlapped the VP4/VP2 cleavage site. Individually expressed VP0-EGFP and P1 strongly colocalized with a marker of selective autophagy, p62/SQSTM1. To assess the role of capsid proteins in autophagy development we infected different cells with poliovirus or encapsidated polio replicon coding for only the replication proteins. We analyzed the processing of LC3B and p62/SQSTM1, markers of the initiation and completion of the autophagy pathway and investigated the association of the viral antigens with these autophagy proteins in infected cells. We observed cell-type-specific development of autophagy upon infection and found that only the virion signal strongly colocalized with p62/SQSTM1 early in infection. Collectively, our data suggest that activation of autophagy is not required for replication, and that capsid proteins contain determinants targeting them to p62/SQSTM1-dependent sequestration. Such a strategy may control the level of capsid proteins so that viral RNAs are not removed from the replication/translation pool prematurely.


Asunto(s)
Autofagia , Proteínas de la Cápside/metabolismo , Interacciones Microbiota-Huesped , Poliovirus/química , Poliovirus/metabolismo , Proteínas Virales/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/clasificación , Proteínas de la Cápside/genética , Células HEK293 , Células HeLa , Humanos , Poliovirus/genética , Procesamiento Proteico-Postraduccional , ARN Viral/metabolismo , Replicón , Proteínas Virales/genética , Virión/metabolismo
4.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375590

RESUMEN

The replication of many positive-strand RNA viruses [(+)RNA viruses] depends on the cellular protein GBF1, but its role in the replication process is not clear. In uninfected cells, GBF1 activates small GTPases of the Arf family and coordinates multiple steps of membrane metabolism, including functioning of the cellular secretory pathway. The nonstructural protein 3A of poliovirus and related viruses has been shown to directly interact with GBF1, likely mediating its recruitment to the replication complexes. Surprisingly, viral mutants with a severely reduced level of 3A-GBF1 interaction demonstrate minimal replication defects in cell culture. Here, we systematically investigated the conserved elements of GBF1 to understand which determinants are important to support poliovirus replication. We demonstrate that multiple GBF1 mutants inactive in cellular metabolism could still be fully functional in the replication complexes. Our results show that the Arf-activating property, but not the primary structure of the Sec7 domain, is indispensable for viral replication. They also suggest a redundant mechanism of recruitment of GBF1 to the replication sites, which is dependent not only on direct interaction of the protein with the viral protein 3A but also on determinants located in the noncatalytic C-terminal domains of GBF1. Such a double-targeting mechanism explains the previous observations of the remarkable tolerance of different levels of GBF1-3A interaction by the virus and likely constitutes an important element of the resilience of viral replication.IMPORTANCE Enteroviruses are a vast group of viruses associated with diverse human diseases, but only two of them could be controlled with vaccines, and effective antiviral therapeutics are lacking. Here, we investigated in detail the contribution of a cellular protein, GBF1, in the replication of poliovirus, a representative enterovirus. GBF1 supports the functioning of cellular membrane metabolism and is recruited to viral replication complexes upon infection. Our results demonstrate that the virus requires a limited subset of the normal GBF1 functions and reveal the elements of GBF1 essential to support viral replication under different conditions. Since diverse viruses often rely on the same cellular proteins for replication, understanding the mechanisms by which these proteins support infection is essential for the development of broad-spectrum antiviral therapeutics.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Poliovirus/fisiología , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Mutación , Poliomielitis/metabolismo , Poliomielitis/virología , Poliovirus/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas del Núcleo Viral/metabolismo
5.
Am J Physiol Cell Physiol ; 310(6): C456-69, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718629

RESUMEN

Members of the large Sec7 domain-containing Arf guanine nucleotide exchange factor (GEF) family have been shown to dimerize through their NH2-terminal dimerization and cyclophilin binding (DCB) and homology upstream of Sec7 (HUS) domains. However, the importance of dimerization in GEF localization and function has not been assessed. We generated a GBF1 mutant (91/130) in which two residues required for oligomerization (K91 and E130 within the DCB domain) were replaced with A and assessed the effects of these mutations on GBF1 localization and cellular functions. We show that 91/130 is compromised in oligomerization but that it targets to the Golgi in a manner indistinguishable from wild-type GBF1 and that it rapidly exchanges between the cytosolic and membrane-bound pools. The 91/130 mutant appears active as it integrates within the functional network at the Golgi, supports Arf activation and COPI recruitment, and sustains Golgi homeostasis and cargo secretion when provided as a sole copy of functional GBF1 in cells. In addition, like wild-type GBF1, the 91/130 mutant supports poliovirus RNA replication, a process requiring GBF1 but believed to be independent of GBF1 catalytic activity. However, oligomerization appears to stabilize GBF1 in cells, and the 91/130 mutant is degraded faster than the wild-type GBF1. Our data support a model in which oligomerization is not a key regulator of GBF1 activity but impacts its function by regulating the cellular levels of GBF1.


Asunto(s)
Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Línea Celular Tumoral , Proteína Coat de Complejo I/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Unión Proteica/fisiología , Proteolisis
6.
Trends Microbiol ; 23(4): 183-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25748799

RESUMEN

All (+)RNA viruses replicate on distinct membranous domains; however, how they induce and maintain their unique lipid composition is largely unknown. Two recent studies reveal that enteroviruses harness the PI4P-cholestrol exchange cycle driven by OSBP1 protein and PI4 kinase(s), and that blocking the dynamic lipid flow inhibits virus replication.


Asunto(s)
Enterovirus/fisiología , Picornaviridae/fisiología , Rhinovirus/fisiología , Replicación Viral , Membrana Celular/metabolismo , Colesterol/metabolismo , Enterovirus/ultraestructura , Homeostasis , Metabolismo de los Lípidos , Lípidos/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo , Picornaviridae/ultraestructura , Receptores de Esteroides/metabolismo , Rhinovirus/ultraestructura , Replicación Viral/efectos de los fármacos
7.
J Virol ; 89(3): 1913-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410869

RESUMEN

PI4KIIIß recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIß to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIß to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIß recruitment occurred independently of both GBF1 and ACBD3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Rhinovirus/fisiología , Proteínas del Núcleo Viral/metabolismo , Humanos , Unión Proteica
8.
J Virol ; 88(19): 11091-107, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008939

RESUMEN

UNLABELLED: Few drugs targeting picornaviruses are available, making the discovery of antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited both the formation and functioning of the replication complexes, while E5(1) and E7(2) were most effective during the formation but not the functioning step. Neither of the compounds significantly inhibited VPg uridylylation. Poliovirus resistant to E7(2) had a G5318A mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target a phosphatidylinositol 4-kinase IIIß (PI4KIIIß)-dependent step in viral replication. Analysis of host protein recruitment showed that E7(2) reduced the amount of GBF1 on the replication complexes; however, the level of PI4KIIIß remained intact. E7(2) as well as another enviroxime-like compound, GW5074, interfered with viral polyprotein processing affecting both 3C- and 2A-dependent cleavages, and the resistant G5318A mutation partially rescued this defect. Moreover, E7(2) induced abnormal recruitment to membranes of the viral proteins; thus, enviroxime-like compounds likely severely compromise the interaction of the viral polyprotein with membranes. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. IMPORTANCE: Diverse picornaviruses can trigger multiple human maladies, yet currently, only hepatitis A virus and poliovirus can be controlled with vaccination. The development of antipicornavirus therapeutics is also facing significant difficulties because these viruses readily generate resistance to compounds targeting either viral or cellular factors. Here, we describe three novel compounds that effectively block replication of distantly related picornaviruses with minimal toxicity to cells. The compounds prevent viral RNA replication after the synthesis of the uridylylated VPg primer. Importantly, two of the inhibitors are strongly refractory to the emergence of resistant mutants, making them promising candidates for further broad-spectrum therapeutic development. Evaluation of one of the compounds in an in vivo model of poliomyelitis demonstrated partial protection from the onset of paralysis.


Asunto(s)
Antivirales/farmacología , Poliomielitis/tratamiento farmacológico , Poliovirus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Animales , Antivirales/química , Sistema Libre de Células , Modelos Animales de Enfermedad , Virus de la Encefalomiocarditis/efectos de los fármacos , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/metabolismo , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Regulación Viral de la Expresión Génica , Células HeLa , Humanos , Ratones , Mutación , Poliomielitis/virología , Poliovirus/genética , Poliovirus/crecimiento & desarrollo , Poliproteínas/antagonistas & inhibidores , Poliproteínas/genética , Poliproteínas/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
PLoS Pathog ; 9(6): e1003401, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762027

RESUMEN

All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well.


Asunto(s)
Coenzima A Ligasas/biosíntesis , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Poliomielitis/enzimología , Poliovirus/fisiología , Replicación Viral/fisiología , Transporte Biológico Activo , Cisteína Endopeptidasas/metabolismo , Células HeLa , Humanos , Poliomielitis/genética , Poliomielitis/metabolismo , Regulación hacia Arriba , Proteínas Virales/metabolismo
10.
PLoS Pathog ; 4(11): e1000216, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023417

RESUMEN

Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA), implicating some components(s) of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Orgánulos/virología , Poliovirus/fisiología , ARN Viral/genética , Proteínas del Núcleo Viral/fisiología , Replicación Viral/efectos de los fármacos , Brefeldino A/farmacología , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Humanos , Mutación , Orgánulos/efectos de los fármacos , Transporte de Proteínas
11.
J Virol ; 81(17): 9259-67, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17567696

RESUMEN

We have previously shown that synthesis of poliovirus protein 3CD in uninfected HeLa cell extracts induces an increased association with membranes of the cellular Arf GTPases, which are key players in cellular membrane traffic. Arfs cycle between an inactive, cytoplasmic, GDP-bound form and an active, membrane-associated, GTP-bound form. 3CD promotes binding of Arf to membranes by initiating recruitment to membranes of guanine nucleotide exchange factors (GEFs), BIG1 and BIG2. GEFs activate Arf by replacing GDP with GTP. In poliovirus-infected cells, there is a dramatic redistribution of cellular Arf pools that coincides with the reorganization of membranes used to form viral RNA replication complexes. Here we demonstrate that Arf translocation in vitro can be induced by purified recombinant 3CD protein; thus, concurrent translation of viral RNA is not required. Coexpression of 3C and 3D proteins was not sufficient to target Arf to membranes. 3CD expressed in HeLa cells was retained after treatment of the cells with digitonin, indicating that it may interact with a membrane-bound host factor. A F441S mutant of 3CD was shown previously to have lost Arf translocation activity and was also defective in attracting the corresponding GEFs to membranes. A series of other mutations were introduced at 3CD residue F441. Mutations that retained Arf translocation activity of 3CD also supported efficient growth of virus, regardless of their effects on 3D polymerase elongation activity. Those that abrogated Arf activation by 3CD generated quasi-infectious RNAs that produced some plaques from which revertants that always restored the Arf activation property of 3CD were rescued.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Cisteína Endopeptidasas/metabolismo , Poliovirus/crecimiento & desarrollo , Proteínas Virales/metabolismo , Replicación Viral , Proteasas Virales 3C , Sustitución de Aminoácidos/genética , Membrana Celular/química , Cisteína Endopeptidasas/genética , Células HeLa , Humanos , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Poliovirus/genética , Poliovirus/metabolismo , Transporte de Proteínas , Ensayo de Placa Viral , Proteínas Virales/genética
12.
J Virol ; 81(2): 558-67, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17079330

RESUMEN

Infection of cells with poliovirus induces a massive intracellular membrane reorganization to form vesicle-like structures where viral RNA replication occurs. The mechanism of membrane remodeling remains unknown, although some observations have implicated components of the cellular secretory and/or autophagy pathways. Recently, we showed that some members of the Arf family of small GTPases, which control secretory trafficking, became membrane-bound after the synthesis of poliovirus proteins in vitro and associated with newly formed membranous RNA replication complexes in infected cells. The recruitment of Arfs to specific target membranes is mediated by a group of guanine nucleotide exchange factors (GEFs) that recycle Arf from its inactive, GDP-bound state to an active GTP-bound form. Here we show that two different viral proteins independently recruit different Arf GEFs (GBF1 and BIG1/2) to the new structures that support virus replication. Intracellular Arf-GTP levels increase approximately 4-fold during poliovirus infection. The requirement for these GEFs explains the sensitivity of virus growth to brefeldin A, which can be rescued by the overexpression of GBF1. The recruitment of Arf to membranes via specific GEFs by poliovirus proteins provides an important clue toward identifying cellular pathways utilized by the virus to form its membranous replication complex.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Poliovirus/patogenicidad , Proteínas del Núcleo Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteasas Virales 3C , Animales , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Poliovirus/fisiología , ARN Viral/metabolismo , Transfección , Células Vero
13.
Virology ; 331(2): 292-306, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15629772

RESUMEN

In several cell types, poliovirus activates the apoptotic program, implementation of which is suppressed by viral antiapoptotic functions. In such cells, productive infection leads to a necrotic cytopathic effect (CPE), while abortive reproduction, associated with inadequate viral antiapoptotic functions, results in apoptosis. Here, we describe two other types of cell response to poliovirus infection. Murine L20B cells expressing human poliovirus receptor responded to the infection by both CPE and apoptosis concurrently. Interruption of productive infection decreased rather than increased the proportion of apoptotic cells. Productive infection was accompanied by the early efflux of cytochrome c from the mitochondria in a proportion of cells and by activation of DEVD-specific caspases. Inactivation of caspase-9 resulted in a marked, but incomplete, prevention of the apoptotic response of these cells to viral infection. Thus, the poliovirus-triggered apoptotic program in L20B cells was not completely suppressed by the viral antiapoptotic functions. In contrast, human rhabdomyosarcoma RD cells did not develop appreciable apoptosis during productive or abortive infection, exhibiting inefficient efflux of cytochrome c from mitochondria and no marked activation of DEVD-specific caspases. The cells were also refractory to several nonviral apoptosis inducers. Nevertheless, typical caspase-dependent signs of apoptosis in a proportion of RD cells were observed after cessation of viral reproduction. Such "late" apoptosis was also observed in productively infected HeLa cells. In addition, a tiny proportion of all studied cells were TUNEL positive even in the presence of a caspase inhibitor. Degradation of DNA in such cells appeared to be a postmortem phenomenon. Biological relevance of variable host responses to viral infection is discussed.


Asunto(s)
Apoptosis , Efecto Citopatogénico Viral , Poliovirus/fisiología , Inhibidores de Caspasas , Caspasas/metabolismo , Fragmentación del ADN , Células HeLa , Humanos , Poliovirus/genética , Poliovirus/patogenicidad , Transducción de Señal , Células Tumorales Cultivadas
14.
J Virol ; 78(18): 10166-77, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15331749

RESUMEN

Poliovirus and some other picornaviruses trigger relocation of certain nuclear proteins into the cytoplasm. Here, by using a protein changing its fluorescence color with time and containing a nuclear localization signal (NLS), we demonstrate that the poliovirus-triggered relocation is largely due to the exit of presynthesized nuclear protein into the cytoplasm. The leakiness of the nuclear envelope was also documented by the inability of nuclei from digitonin-permeabilized, virus-infected (but not mock-infected) cells to retain an NLS-containing derivative of green fluorescent protein (GFP). The cytoplasm-to-nucleus traffic was also facilitated during infection, as evidenced by experiments with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), cyclin B1, and an NLS-lacking derivative of GFP, which are predominantly cytoplasmic in uninfected cells. Electron microscopy demonstrated that a bar-like barrier structure in the channel of the nuclear pores, seen in uninfected cells, was missing in the infected cells, giving the impression of fully open pores. Transient expression of poliovirus 2A protease also resulted in relocation of the nuclear proteins. Lysates from poliovirus-infected or 2A-expressing cells induced efflux of 3xEGFP-NLS from the nuclei of permeabilized uninfected cells. This activity was inhibited by the elastase inhibitors elastatinal and N-(methoxysuccinyl)-L-alanyl-L-alanyl-L-prolyl-L-valine chloromethylketone (drugs known also to be inhibitors of poliovirus protease 2A), a caspase inhibitor zVAD(OMe), fmk, and some other protease inhibitors. These data suggest that 2A elicited nuclear efflux, possibly in cooperation with a zVAD(OMe).fmk-sensitive protease. However, poliovirus infection facilitated nuclear protein efflux also in cells deficient in caspase-3 and caspase-9, suggesting that the efflux may occur without the involvement of these enzymes. The biological relevance of nucleocytoplasmic traffic alterations in infected cells is discussed.


Asunto(s)
Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Poliovirus/patogenicidad , Transporte Activo de Núcleo Celular , Caspasa 3 , Caspasa 9 , Caspasas/metabolismo , Línea Celular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica , Membrana Nuclear/ultraestructura , Señales de Localización Nuclear , Proteínas Nucleares/metabolismo , Permeabilidad/efectos de los fármacos , Poliovirus/enzimología , Poliovirus/genética , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
Exp Cell Res ; 284(2): 211-23, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12651154

RESUMEN

Human prothymosin alpha is a proliferation-related nuclear protein undergoing caspase-mediated fragmentation in apoptotic cells. We show here that caspase-3 is the principal executor of prothymosin alpha fragmentation in vivo. In apoptotic HeLa cells as well as in vitro, caspase-3 cleaves prothymosin alpha at one major carboxy terminal (DDVD(99)) and several suboptimal sites. Prothymosin alpha cleavage at two amino-terminal sites (AAVD(6) and NGRD(31)) contributes significantly to the final pattern of prothymosin alpha fragmentation in vitro and could be detected to occur in apoptotic cells. The major caspase cleavage at D(99) disrupts the nuclear localization signal of prothymosin alpha, which leads to a profound alteration in subcellular localization of the truncated protein. By using a set of anti-prothymosin alpha monoclonal antibodies, we were able to observe nuclear escape and cell surface exposure of endogenous prothymosin alpha in apoptotic, but not in normal, cells. We demonstrate also that ectopic production of human prothymosin alpha and its mutants with nuclear or nuclear-cytoplasmic localization confers increased resistance of HeLa cells toward the tumor necrosis factor-induced apoptosis.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Células Eucariotas/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/biosíntesis , Transporte de Proteínas/fisiología , Timosina/análogos & derivados , Timosina/biosíntesis , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos/fisiología , Anticuerpos Monoclonales , Apoptosis/efectos de los fármacos , Caspasa 3 , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Células HeLa , Humanos , Mutación/genética , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/genética , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Timosina/antagonistas & inhibidores , Timosina/genética
16.
J Virol ; 77(1): 45-56, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12477809

RESUMEN

Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9.


Asunto(s)
Apoptosis , Poliovirus/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Proteínas Portadoras/metabolismo , Caspasa 3 , Caspasa 9 , Caspasas/fisiología , Grupo Citocromo c/metabolismo , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA