Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Pathol ; 264(2): 212-227, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177649

RESUMEN

WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Glomérulos Renales , Podocitos , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma , Proteínas WT1 , Animales , Podocitos/metabolismo , Podocitos/patología , Proteínas WT1/metabolismo , Proteínas WT1/genética , Humanos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/irrigación sanguínea , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Modelos Animales de Enfermedad , Mutación , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Adrenomedulina/genética , Adrenomedulina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Comunicación Celular , Células Cultivadas
2.
Methods Mol Biol ; 2650: 35-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37310621

RESUMEN

The technique electric cell-substrate impedance sensing (ECIS) can be used to detect and monitor the behavior of intestinal cells. The methodology presented was designed to achieve results within a short time frame, and it was tailored to use a colonic cancer cell line. Differentiation of intestinal cancer cells has previously been reported to be regulated by retinoic acid (RA). Here, colonic cancer cells were cultured in the ECIS array before being treated with RA, and any changes in response to RA were monitored after treatment. The ECIS recorded changes in impedance in response to the treatment and vehicle. This methodology poses as a novel way to record the behavior of colonic cells and opens new avenues for in vitro research.


Asunto(s)
Neoplasias del Colon , Intestinos , Humanos , Impedancia Eléctrica , Diferenciación Celular , Tretinoina/farmacología
5.
J Clin Invest ; 130(8): 4235-4251, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32427589

RESUMEN

Aberrant, neovascular retinal blood vessel growth is a vision-threatening complication in ischemic retinal diseases. It is driven by retinal hypoxia frequently caused by capillary nonperfusion and endothelial cell (EC) loss. We investigated the role of EC apoptosis in this process using a mouse model of ischemic retinopathy, in which vessel closure and EC apoptosis cause capillary regression and retinal ischemia followed by neovascularization. Protecting ECs from apoptosis in this model did not prevent capillary closure or retinal ischemia. Nonetheless, it prevented the clearance of ECs from closed capillaries, delaying vessel regression and allowing ECs to persist in clusters throughout the ischemic zone. In response to hypoxia, these preserved ECs underwent a vessel sprouting response and rapidly reassembled into a functional vascular network. This alleviated retinal hypoxia, preventing subsequent pathogenic neovascularization. Vessel reassembly was not limited by VEGFA neutralization, suggesting it was not dependent on the excess VEGFA produced by the ischemic retina. Neutralization of ANG2 did not prevent vessel reassembly, but did impair subsequent angiogenic expansion of the reassembled vessels. Blockade of EC apoptosis may promote ischemic tissue revascularization by preserving ECs within ischemic tissue that retain the capacity to reassemble a functional network and rapidly restore blood supply.


Asunto(s)
Apoptosis , Células Endoteliales/metabolismo , Isquemia/metabolismo , Vasos Retinianos/metabolismo , Ribonucleasa Pancreática/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Isquemia/genética , Isquemia/patología , Ratones , Ratones Noqueados , Enfermedades de la Retina , Vasos Retinianos/patología , Ribonucleasa Pancreática/genética , Factor A de Crecimiento Endotelial Vascular/genética
6.
Microcirculation ; 26(6): e12549, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30974486

RESUMEN

INTRODUCTION: Arteriolargenesis can be induced by concomitant stimulation of nitric Oxide (NO)-Angiopoietin receptor (Tie)-Vascular Endothelial Growth Factor (VEGF) signaling in the rat mesentery angiogenesis assay. We hypothesized that the same combination of exogenously added growth factors would also have a positive impact on arteriolargenesis and, consequently, the recovery of blood flow in a model of unilateral hindlimb ischemia. RESULTS AND METHODS: NO-Tie mice had faster blood flow recovery compared to control mice, as assessed by laser speckle imaging. There was no change in capillary density within the ischemic muscles, but arteriole density was higher in NO-Tie mice. Given the previously documented beneficial effect of VEGF signaling, we tested whether NO-Tie-VEGF mice would show further improvement. Surprisingly, these mice recovered no differently from control, arteriole density was similar and capillary density was lower. Dll4 is a driver of arterial specification, so we hypothesized that Notch1 expression would be involved in arteriolargenesis. There was a significant upregulation of Notch1 transcripts in NO-Tie-VEGF compared with NO-Tie mice. Using soluble Dll4 (sDll4), we stimulated Notch signaling in the ischemic muscles of mice. NO-Tie-sDll4 mice had significantly increased capillary and arteriole densities, but impaired blood flow recovery. CONCLUSION: These results suggest that Dll4 activation early on in revascularization can lead to unproductive angiogenesis and arteriolargenesis, despite increased vascular densities. These results suggest spatial and temporal balance of growth factors needs to be perfected for ideal functional and anatomical revascularisation.


Asunto(s)
Angiopoyetinas/metabolismo , Isquemia , Músculo Esquelético , Neovascularización Fisiológica , Óxido Nítrico/metabolismo , Receptor Notch1/metabolismo , Receptores TIE/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Arteriolas/metabolismo , Arteriolas/patología , Células CHO , Proteínas de Unión al Calcio/metabolismo , Capilares/metabolismo , Capilares/patología , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Isquemia/metabolismo , Isquemia/patología , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 316(5): H1065-H1075, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681366

RESUMEN

The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas de Unión al Calcio/farmacología , Permeabilidad Capilar/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Mesenterio/irrigación sanguínea , Receptores Notch/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/enzimología , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Ratas Wistar , Vénulas/efectos de los fármacos , Vénulas/enzimología
8.
Arterioscler Thromb Vasc Biol ; 38(9): 2117-2125, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354255

RESUMEN

Objective- The NTs (neurotrophins), BDNF (brain-derived neurotrophic factor) and NT-3 promote vascular development and angiogenesis. This study investigated the contribution of endogenous NTs in embryonic stem cell (ESC) vascular differentiation and the potential of exogenous BDNF to improve the process of ESC differentiation to endothelial cells (ECs). Approach and Results- Mouse ESCs were differentiated into vascular cells using a 2-dimensional embryoid body (EB) model. Supplementation of either BDNF or NT-3 increased EC progenitors' abundance at day 7 and enlarged the peripheral vascular plexus with ECs and SM22α+ (smooth muscle 22 alpha-positive) smooth muscle cells by day 13. Conversely, inhibition of either BDNF or NT-3 receptor signaling reduced ECs, without affecting smooth muscle cells spread. This suggests that during vascular development, endogenous NTs are especially relevant for endothelial differentiation. At mechanistic level, we have identified that BDNF-driven ESC-endothelial differentiation is mediated by a pathway encompassing the transcriptional repressor EZH2 (enhancer of zeste homolog 2), microRNA-214 (miR-214), and eNOS (endothelial nitric oxide synthase). It was known that eNOS, which is needed for endothelial differentiation, can be transcriptionally repressed by EZH2. In turn, miR-214 targets EZH2 for inhibition. We newly found that in ESC-ECs, BDNF increases miR-214 expression, reduces EZH2 occupancy of the eNOS promoter, and increases eNOS expression. Moreover, we found that NRP-1 (neuropilin 1), KDR (kinase insert domain receptor), and pCas130 (p130 Crk-associated substrate kinase), which reportedly induce definitive endothelial differentiation of pluripotent cells, were increased in BDNF-conditioned ESC-EC. Mechanistically, miR-214 mediated the BDNF-induced expressional changes, contributing to BDNF-driven endothelial differentiation. Finally, BDNF-conditioned ESC-ECs promoted angiogenesis in vitro and in vivo. Conclusions- BDNF promotes ESC-endothelial differentiation acting via miR-214.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Diferenciación Celular , Células Madre Embrionarias/fisiología , Células Endoteliales/fisiología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteína Sustrato Asociada a CrK/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inmunofilinas/metabolismo , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Curr Opin Pharmacol ; 35: 66-74, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28623714

RESUMEN

Tumours elicit a number of mechanisms to induce a reprogramming of innate and adaptive immune cells to their advantage, inducing a pro-angiogenic phenotype. Investigation of these events is now leading to the identification of specific myeloid and lymphoid cell-targeted therapies, as well as of unexplored off-target activities of clinically relevant chemotherapeutic and metabolic drugs. It is also leading to an enhanced understanding of the interplay between angiogenesis and the immune system, and the value of novel co-targeting approaches using both immunotherapy and anti-angiogenic therapy. Here, we review recently identified mechanisms and potential pharmacological approaches targeting the crosstalk between cancer cells and the host immune system, providing an overview on novel therapeutic opportunities linking immuno-oncology and anti-angiogenic therapy.


Asunto(s)
Neoplasias , Neovascularización Patológica , Animales , Humanos , Linfocitos/inmunología , Células Mieloides/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología
10.
Methods Mol Biol ; 1430: 345-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27172966

RESUMEN

Successful therapeutic angiogenesis requires an understanding of how the myriad interactions of growth factors released during angiogenesis combine to form a mature vascular bed. This requires a model in which multiple physiological and cell biological parameters can be identified. The adenoviral-mediated mesenteric angiogenesis assay as described here is ideal for that purpose. The clear, thin, and relatively avascular mesenteric panel can be used to measure increased vessel perfusion by intravital microscopy. In addition, high-powered microvessel analysis is carried out by immunostaining of features essential for the study of angiogenesis or lymphangiogenesis (including endothelium, pericyte, smooth muscle cell area, and proliferation), allowing functional data to be obtained in conjunction with high-power microvessel ultrastructural analysis. Therefore, the mesenteric angiogenesis model offers a robust system to analyze the morphological changes associated with angiogenesis, induced by different agents.


Asunto(s)
Linfangiogénesis , Arterias Mesentéricas/fisiología , Neovascularización Fisiológica , Adenoviridae , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular , Microscopía Intravital , Neovascularización Patológica , Pericitos/citología , Ratas
11.
Cell Rep ; 12(11): 1761-73, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26344773

RESUMEN

Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.


Asunto(s)
Receptor TIE-1/fisiología , Receptor TIE-2/fisiología , Remodelación Vascular/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Endoteliales/enzimología , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Vasos Retinianos/fisiología , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 111(52): E5688-96, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512551

RESUMEN

Interactions between natural killer (NK) cells and dendritic cells (DCs) aid DC maturation and promote T-cell responses. Here, we have analyzed the response of human NK cells to tumor cells, and we identify a pathway by which NK-DC interactions occur. Gene expression profiling of tumor-responsive NK cells identified the very rapid induction of TNF superfamily member 14 [TNFSF14; also known as homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT)], a cytokine implicated in the enhancement of antitumor responses. TNFSF14 protein expression was induced by three primary mechanisms of NK cell activation, namely, via the engagement of CD16, by the synergistic activity of multiple target cell-sensing NK-cell activation receptors, and by the cytokines IL-2 and IL-15. For antitumor responses, TNFSF14 was preferentially produced by the licensed NK-cell population, defined by the expression of inhibitory receptors specific for self-MHC class I molecules. In contrast, IL-2 and IL-15 treatment induced TNFSF14 production by both licensed and unlicensed NK cells, reflecting the ability of proinflammatory conditions to override the licensing mechanism. Importantly, both tumor- and cytokine-activated NK cells induced DC maturation in a TNFSF14-dependent manner. The coupling of TNFSF14 production to tumor-sensing NK-cell activation receptors links the tumor immune surveillance function of NK cells to DC maturation and adaptive immunity. Furthermore, regulation by NK cell licensing helps to safeguard against TNFSF14 production in response to healthy tissues.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Vigilancia Inmunológica , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Técnicas de Cocultivo , Células Dendríticas/citología , Femenino , Proteínas Ligadas a GPI/inmunología , Humanos , Interleucina-15/inmunología , Interleucina-2/inmunología , Células K562 , Células Asesinas Naturales/citología , Masculino , Neoplasias/inmunología , Receptores de IgG/inmunología
13.
PLoS One ; 8(8): e70459, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940579

RESUMEN

Genetic experiments (loss-of-function and gain-of-function) have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2) acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived) regulator of rapid vascular responses (within minutes) caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min), the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/-)) mice. In comparison to the wild type control mice, the Ang2(-/-) mice demonstrated a significantly attenuated response. The Ang-2(-/-) phenotype was rescued by systemic administration (paracrine) of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/-) endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2) alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.


Asunto(s)
Angiopoyetina 2/metabolismo , Citocinas/farmacología , Angiopoyetina 2/genética , Animales , Western Blotting , Bradiquinina/genética , Bradiquinina/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Noqueados , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
J Clin Invest ; 119(8): 2359-65, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620773

RESUMEN

Hemangiomas are the most common type of tumor in infants. As they are endothelial cell-derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T-transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/-, and Ang2-/- mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/- cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/- cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function.


Asunto(s)
Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Hemangioma/tratamiento farmacológico , NADPH Oxidasas/antagonistas & inhibidores , Angiopoyetina 2/fisiología , Animales , Células Endoteliales/metabolismo , Hemangioma/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/fisiología , Proteínas/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Methods Mol Biol ; 467: 251-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19301676

RESUMEN

Successful therapeutic angiogenesis requires an understanding of how the milieu of growth factors available combine to form a mature vascular bed. This requires a model in which multiple physiological and cell biological parameters can be identified. The adenoviral-mediated mesenteric angiogenesis assay as described here is ideal for that purpose. Adenoviruses expressing growth factors (vascular endothelial growth factor [VEGF] and angiopoietin 1 [Ang-1]) were injected into the mesenteric fat pad of adult male Wistar rats. The clear, thin, and relatively avascular mesenteric panel was used to measure increased vessel perfusion by intravital microscopy. In addition, high-powered microvessel analysis was carried out by immunostaining of features essential for the study of angiogenesis (endothelium, pericyte, smooth muscle cell area, and proliferation), allowing functional data to be obtained in conjunction with high-power microvessel ultrastructural analysis. A combination of individual growth factors resulted in a distinct vascular phenotype from either factor alone, with all treatments increasing the functional vessel area. VEGF produced shorter, narrow, highly branched, and sprouting vessels with normal pericyte coverage. Ang-1 induced broader, longer neovessels with no apparent increase in branching or sprouting. However, Ang-1-induced blood vessels displayed a significantly higher pericyte ensheathment. Combined treatment resulted in higher perfusion, larger and less-branched vessels, with normal pericyte coverage, suggesting them to be more mature. This model can be used to show that Ang-1 and VEGF use different physiological mechanisms to enhance vascularisation of relatively avascular tissue.


Asunto(s)
Bioensayo/métodos , Neovascularización Fisiológica , Adenoviridae/genética , Angiotensina I/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Expresión Génica , Humanos , Masculino , Microvasos/citología , Microvasos/metabolismo , Fenotipo , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 28(8): 1462-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18497305

RESUMEN

BACKGROUND: Generation of physiologically active vascular beds by delivery of combinations of growth factors offers promise for vascular gene therapy. METHODS AND RESULTS: In a mesenteric model of physiological angiogenesis, combining endothelial nitric oxide synthase (eNOS) (and hence NO production) with VEGF and angiopoietin-1 overexpression resulted in a more functional vascular phenotype than growth factor administration alone. eNOS gene delivery upregulated eNOS, VEGF, and Ang-1 to similar levels as gene transfer with VEGF or Ang-1. eNOS overexpression resulted in neovascularization to a similar extent as VEGF and Ang-1 combined, but not by sprouting angiogenesis. Whereas combining Ang-1 and VEGF increased both exchange vessels and conduit vessels, neither growth factor nor eNOS alone resulted in vessels with smooth muscle cell (SMC) coverage. In contrast, combining all three generated microvessels with SMCs (arteriolar genesis) and further increased functional vessels. Use of a vasodilator, prazosin, in combination with Ang1 and VEGF, but not alone, also generated SMC-positive vessels. CONCLUSIONS: Coexpression of eNOS, VEGF, and Ang-1 results in a more mature vascularization of connective tissue, and generates new arterioles as well as new capillaries, and provides a more physiological therapeutic approach than single growth factor administration, by combining hemodynamic forces with growth factors.


Asunto(s)
Neovascularización Fisiológica/fisiología , Circulación Esplácnica/fisiología , Angiopoyetina 1/fisiología , Animales , Masculino , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Óxido Nítrico Sintasa de Tipo II/fisiología , Óxido Nítrico Sintasa de Tipo III , Pericitos/fisiología , Ratas , Flujo Sanguíneo Regional/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
18.
Cardiovasc Res ; 78(2): 315-23, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18065770

RESUMEN

AIMS: Vascular endothelial growth factor-C (VEGF-C) has been shown to stimulate both angiogenesis and lymphangiogenesis in some but not all models where VEGF-C is over-expressed. Our aim was to investigate the interaction between lymphangiogenesis and angiogenesis in adult tissues regulated by VEGF-C and identify evidence of polarized growth of lymphatics driven by specialized cells at the tip of the growing sprout. METHODS AND RESULTS: We used an adult model of lymphangiogenesis in the rat mesentery. The angiogenic effect of VEGF-C was markedly attenuated in the presence of a growing lymphatic network. Furthermore, we show that this growth of lymphatic vessels can occur both by recruitment of isolated lymphatic islands to a connected network and by filopodial sprouting. The latter is independent of polarized tip cell differentiation that can be generated all along lymphatic capillaries, independently of the proliferation status of the lymphatic endothelial cells. CONCLUSION: These results both demonstrate a dependence of VEGF-C-mediated angiogenesis on lymphatic vascular networks and indicate that the mechanism of VEGF-C-mediated lymphangiogenesis is different from that of classical angiogenic mechanisms.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/metabolismo , Mesenterio/irrigación sanguínea , Neovascularización Fisiológica , Factor C de Crecimiento Endotelial Vascular/metabolismo , Adenoviridae/genética , Animales , Diferenciación Celular , Proliferación Celular , Endotelio Linfático/metabolismo , Endotelio Vascular/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía por Video , Fenotipo , Seudópodos/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/genética
19.
Microcirculation ; 13(6): 423-37, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16864410

RESUMEN

OBJECTIVE: Therapeutic angiogenesis requires an understanding of how growth factors such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) result in physiological neovascularization. This study determined the physiological mechanism by which adenoviral delivery of growth factor combinations alter vascular phenotype and functionality. METHODS: Adenovirus-mediated gene transfer into the adjacent fat pad of the rat mesentery was used to characterize induction of angiogenesis by VEGF and Ang-1, in a model that permitted a detailed examination of the neovessel phenotype. RESULTS: Ang-1 combined with VEGF resulted in a distinct vascular phenotype from either factor alone. Microvascular perfusion was significantly enhanced in all groups, but VEGF produced short, narrow, highly branched and sprouting vessels, with normal pericyte coverage. Ang-1 induced broader, longer neovessels, with no increase in branching or sprouting, yet a significantly higher pericyte ensheathment. Combination of Ang-1 and VEGF generated a significantly higher degree of functionally perfused, larger, less branched, and more mature microvessels, resulting from increased efficiency of sprout to vessel formation. Ang-1 and VEGF also caused differential effects on larger compared with smaller blood vessels, a finding reproduced in vitro. CONCLUSIONS: Ang-1 and VEGF use different physiological mechanisms to enhance neovascularization of relatively avascular tissue. Administration of both growth factors combines these physiological mechanisms to give greater enhancement of neovascularization than either growth factor alone. These results suggest that effective revascularization therapy may require combination growth factor treatment.


Asunto(s)
Adenoviridae , Angiopoyetina 1/biosíntesis , Mesenterio/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Angiopoyetina 1/genética , Animales , Humanos , Masculino , Mesenterio/citología , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/genética
20.
Biochem Biophys Res Commun ; 306(2): 388-93, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12804575

RESUMEN

Class Ia antiarrhythmic drugs, including procainamide (PROC), are associated with cardiac sodium channel blockade, delayed ventricular repolarisation and with a risk of ventricular pro-arrhythmia. The HERG K(+) channel is frequently linked to drug-induced pro-arrhythmia. Therefore, in this study, interactions between PROC and HERG K(+) channels were investigated, with particular reference to potency and mechanism of drug action. Whole-cell patch-clamp recordings of HERG current (I(HERG)) were made at 37 degrees C from human embryonic kidney (HEK 293) cells stably expressing the HERG channel. Following activating pulses to +20 mV, I(HERG) tails were inhibited by PROC with an IC(50) value of approximately 139 microM. I(HERG) blockade was found to be both time- and voltage-dependent, demonstrating contingency upon HERG channel gating. However, I(HERG) inhibition by PROC was relieved by depolarisation to a highly positive membrane potential (+80 mV) that favoured HERG channel inactivation. These data suggest that PROC inhibits the HERG K(+) channel by a primarily 'open' or 'activated' channel state blocking mechanism and that avidity of drug-binding is decreased by extensive I(HERG) inactivation. The potency of I(HERG) blockade by PROC is much lower than for other Class Ia agents that have been studied previously under analogous conditions (quinidine and disopyramide), although the blocking mechanism appears similar. Thus, differences between the chemical structure of PROC and other Class Ia antiarrhythmic drugs may help provide insight into chemical determinants of blocking potency for agents that bind to open/activated HERG channels.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/química , Procainamida/farmacología , Transactivadores , Antiarrítmicos/farmacología , Línea Celular , Membrana Celular/metabolismo , Disopiramida/farmacología , Canal de Potasio ERG1 , Electrofisiología , Canales de Potasio Éter-A-Go-Go , Humanos , Concentración 50 Inhibidora , Síndrome de QT Prolongado/metabolismo , Potenciales de la Membrana , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Quinidina/farmacología , Factores de Tiempo , Regulador Transcripcional ERG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA