Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 15(1): 5107, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877001

RESUMEN

Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.


Asunto(s)
Proteínas 14-3-3 , Proteínas de Arabidopsis , Arabidopsis , Ácido Fítico , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Ácido Fítico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos de Inositol/metabolismo
2.
Nat Plants ; 10(6): 857-873, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38658791

RESUMEN

Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.


Asunto(s)
Cromatina , Reparación del ADN , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , ARN de Planta/metabolismo , ARN de Planta/genética , Plantas/genética , Plantas/metabolismo , Inestabilidad Genómica , ADN de Plantas/metabolismo , ADN de Plantas/genética
3.
Cell Res ; 34(4): 281-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200278

RESUMEN

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aluminio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Iones , Suelo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
4.
Nat Commun ; 14(1): 7538, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985755

RESUMEN

Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.


Asunto(s)
Epigenómica , Triticum , Triticum/genética , Triticum/metabolismo , Histonas/metabolismo , Epigénesis Genética , Genoma de Planta/genética
5.
Commun Biol ; 6(1): 903, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666980

RESUMEN

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , División Celular , Ciclo Celular/genética , Desarrollo de la Planta
6.
Nat Plants ; 9(10): 1675-1687, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653338

RESUMEN

Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.


Asunto(s)
Cucurbitaceae , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Etilenos/metabolismo , Cucurbitaceae/genética , Flores , Regulación de la Expresión Génica de las Plantas
7.
PLoS Pathog ; 17(5): e1009572, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015058

RESUMEN

Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ensamble y Desensamble de Cromatina/inmunología , ADN Helicasas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Pseudomonas syringae/inmunología , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Cromatina/genética , ADN Helicasas/genética , Homeostasis , Nucleosomas/genética , Oxidación-Reducción , Estrés Oxidativo , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/fisiología
8.
Commun Biol ; 4(1): 529, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953336

RESUMEN

The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1 GEX1A RESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Empalmosomas/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Empalmosomas/genética
9.
Plant Genome ; 14(1): e20069, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33155760

RESUMEN

Bread wheat is an allohexaploid species originating from two successive and recent rounds of hybridization between three diploid species that were very similar in terms of chromosome number, genome size, TE content, gene content and synteny. As a result, it has long been considered that most of the genes were in three pairs of homoeologous copies. However, these so-called triads represent only one half of wheat genes, while the remaining half belong to homoeologous groups with various number of copies across subgenomes. In this study, we examined and compared the distribution, conservation, function, expression and epigenetic profiles of triads with homoeologous groups having undergone a deletion (dyads) or a duplication (tetrads) in one subgenome. We show that dyads and tetrads are mostly located in distal regions and have lower expression level and breadth than triads. Moreover, they are enriched in functions related to adaptation and more associated with the repressive H3K27me3 modification. Altogether, these results suggest that triads mainly correspond to housekeeping genes and are part of the core genome, while dyads and tetrads belong to the Triticeae dispensable genome. In addition, by comparing the different categories of dyads and tetrads, we hypothesize that, unlike most of the allopolyploid species, subgenome dominance and biased fractionation are absent in hexaploid wheat. Differences observed between the three subgenomes are more likely related to two successive and ongoing waves of post-polyploid diploidization, that had impacted A and B more significantly than D, as a result of the evolutionary history of hexaploid wheat.


Asunto(s)
Variaciones en el Número de Copia de ADN , Triticum , Genoma de Planta , Humanos , Poliploidía , Sintenía , Triticum/genética
10.
J Exp Bot ; 71(17): 5129-5147, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32639553

RESUMEN

In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.


Asunto(s)
Cromatina , Genoma , Animales , Núcleo Celular/genética , Cromatina/genética , Cromosomas de las Plantas , Plantas/genética
11.
Genome Biol ; 21(1): 104, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349780

RESUMEN

BACKGROUND: Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures. RESULTS: We examine the hexaploid wheat nuclear architecture by integrating RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Hi-ChIP data. Our results highlight the presence of three levels of large-scale spatial organization: the arrangement into genome territories, the diametrical separation between facultative and constitutive heterochromatin, and the organization of RNA polymerase II around transcription factories. We demonstrate the micro-compartmentalization of transcriptionally active genes determined by physical interactions between genes with specific euchromatic histone modifications. Both intra- and interchromosomal RNA polymerase-associated contacts involve multiple genes displaying similar expression levels. CONCLUSIONS: Our results provide new insights into the physical chromosome organization of a polyploid genome, as well as on the relationship between epigenetic marks and chromosome conformation to determine a 3D spatial organization of gene expression, a key factor governing gene transcription in polyploids.


Asunto(s)
Cromatina/química , Transcripción Genética , Triticum/genética , Genoma de Planta , Código de Histonas , Poliploidía , ARN Polimerasa II/análisis
12.
EMBO Rep ; 21(5): e48977, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285620

RESUMEN

Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Empalme de ARN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma
13.
Plant Biotechnol J ; 18(8): 1810-1829, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31960590

RESUMEN

Soybean cyst nematode (SCN, Heterodera glycines) is the most devastating pest affecting soybean production worldwide. SCN resistance requires both the GmSHMT08 and the GmSNAP18 in 'Peking'-type resistance. Here, we describe the molecular interaction between GmSHMT08 and GmSNAP18, which is potentiated by a pathogenesis-related protein GmPR08-Bet VI. Like GmSNAP18 and GmSHMT08, GmPR08-Bet VI expression was induced in response to SCN and its overexpression decreased SCN cysts by 65% in infected transgenic soybean roots. Overexpression of GmPR08-Bet VI did not have an effect on SCN resistance when the two cytokinin-binding sites in GmPR08-Bet VI were mutated, indicating a new role of GmPR08-Bet VI in SCN resistance. GmPR08-Bet VI was mapped to a QTL for resistance to SCN using different mapping populations. GmSHMT08, GmSNAP18 and GmPR08-Bet VI localize to the cytosol and plasma membrane. GmSNAP18 expression and localization hyper-accumulated at the plasma membrane and was specific to the root cells surrounding the nematode in SCN-resistant soybeans. Genes encoding key components of the salicylic acid signalling pathway were induced under SCN infection. GmSNAP18 and GmPR08-Bet VI were also induced under salicylic acid and cytokinin exogenous treatments, while GmSHMT08 was induced only when the resistant GmSNAP18 was present, pointing to the presence of a molecular crosstalk between SCN-resistant genes and defence genes. Expression analysis of GmSHMT08 and GmSNAP18 identified the need of a minimum expression requirement to trigger the SCN resistance reaction. These results provide insight into a new response mechanism towards plant nematode resistance involving haplotype compatibility, gene dosage and hormone signalling.


Asunto(s)
Resistencia a la Enfermedad , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Ácido Salicílico , Glycine max/genética
14.
New Phytol ; 223(3): 1433-1446, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30773647

RESUMEN

Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant's response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hierro/farmacología , Transcripción Genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Elementos E-Box/genética , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis , Modelos Biológicos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos
15.
PLoS Genet ; 15(1): e1007899, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695029

RESUMEN

Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9/genética , Proteínas Cullin/genética , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Proliferación Celular/genética , Drosophila/genética , Nicotiana/genética , Ubiquitina
16.
Plant Cell ; 30(5): 986-1005, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618631

RESUMEN

Methylations at position N6 of internal adenosines (m6As) are the most abundant and widespread mRNA modifications. These modifications play crucial roles in reproduction, growth, and development by controlling gene expression patterns at the posttranscriptional level. Their function is decoded by readers that share the YTH domain, which forms a hydrophobic pocket that directly accommodates the m6A residues. While the physiological and molecular functions of YTH readers have been extensively studied in animals, little is known about plant readers, even though m6As are crucial for plant survival and development. Viridiplantae contains high numbers of YTH domain proteins. Here, we performed comprehensive evolutionary analysis of YTH domain proteins and demonstrated that they are highly likely to be actual readers with redundant as well as specific functions. We also show that the ECT2 protein from Arabidopsis thaliana binds to m6A-containing RNAs in vivo and that this property relies on the m6A binding pocket carried by its YTH domain. ECT2 is cytoplasmic and relocates to stress granules upon heat exposure, suggesting that it controls mRNA fate in the cytosol. Finally, we demonstrate that ECT2 acts to decode the m6A signal in the trichome and is required for their normal branching through controlling their ploidy levels.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Tricomas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica
17.
PLoS Genet ; 14(3): e1007273, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554117

RESUMEN

Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Enterobacter/fisiología , Etilenos/metabolismo , Metionina/análogos & derivados , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Metionina/biosíntesis , Metionina/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Potasio/metabolismo
18.
Nucleic Acids Res ; 46(5): 2169-2184, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29425321

RESUMEN

Massive high-throughput sequencing techniques allowed the identification of thousands of noncoding RNAs (ncRNAs) and a plethora of different mRNA processing events occurring in higher organisms. Long ncRNAs can act directly as long transcripts or can be processed into active small si/miRNAs. They can modulate mRNA cleavage, translational repression or the epigenetic landscape of their target genes. Recently, certain long ncRNAs have been shown to play a crucial role in the regulation of alternative splicing in response to several stimuli or during disease. In this review, we focus on recent discoveries linking gene regulation by alternative splicing and its modulation by long and small ncRNAs.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Animales , Humanos , Modelos Genéticos , Neoplasias/genética , Neoplasias/patología
19.
Proc Natl Acad Sci U S A ; 114(17): 4543-4548, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28404731

RESUMEN

The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.


Asunto(s)
Epigenómica , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta , Medicago truncatula/genética , Ploidias , Sinorhizobium/fisiología , Perfilación de la Expresión Génica , Medicago truncatula/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
20.
BMC Genomics ; 18(1): 260, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28347276

RESUMEN

BACKGROUND: Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. RESULTS: Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. CONCLUSIONS: Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.


Asunto(s)
Arabidopsis/genética , Alcoholes Grasos/farmacología , Piranos/farmacología , Empalme del ARN/efectos de los fármacos , ARN de Planta/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Compuestos Epoxi/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Macrólidos/farmacología , Regiones Promotoras Genéticas , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Planta/genética , Semillas/crecimiento & desarrollo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Estrés Fisiológico/genética , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA