Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Brain ; 147(5): 1784-1798, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387080

RESUMEN

The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Animales , Humanos , Expansión de Repetición de Trinucleótido/genética , Ratones , Proteína Huntingtina/genética , Proteína 3 Homóloga de MutS/genética , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética , Encéfalo/patología , Encéfalo/metabolismo
2.
Stem Cells Transl Med ; 5(7): 925-37, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27112176

RESUMEN

UNLABELLED: Retinal pigment epithelium (RPE) cell integrity is critical to the maintenance of retinal function. Many retinopathies such as age-related macular degeneration (AMD) are caused by the degeneration or malfunction of the RPE cell layer. Replacement of diseased RPE with healthy, stem cell-derived RPE is a potential therapeutic strategy for treating AMD. Human embryonic stem cells (hESCs) differentiated into RPE progeny have the potential to provide an unlimited supply of cells for transplantation, but challenges around scalability and efficiency of the differentiation process still remain. Using hESC-derived RPE as a cellular model, we sought to understand mechanisms that could be modulated to increase RPE yield after differentiation. We show that RPE epithelialization is a density-dependent process, and cells seeded at low density fail to epithelialize. We demonstrate that activation of the cAMP pathway increases proliferation of dissociated RPE in culture, in part through inhibition of transforming growth factor-ß (TGF-ß) signaling. This results in enhanced uptake of epithelial identity, even in cultures seeded at low density. In line with these findings, targeted manipulation of the TGF-ß pathway with small molecules produces an increase in efficiency of RPE re-epithelialization. Taken together, these data highlight mechanisms that promote epithelial fate acquisition in stem cell-derived RPE. Modulation of these pathways has the potential to favorably impact scalability and clinical translation of hESC-derived RPE as a cell therapy. SIGNIFICANCE: Stem cell-derived retinal pigment epithelium (RPE) is currently being evaluated as a cell-replacement therapy for macular degeneration. This work shows that the process of generating RPE in vitro is regulated by the cAMP and transforming growth factor-ß signaling pathway. Modulation of these pathways by small molecules, as identified by phenotypic screening, leads to an increased efficiency of generating RPE cells with a higher yield. This can have a potential impact on manufacturing transplantation-ready cells at large scale and is advantageous for clinical studies using this approach in the future.


Asunto(s)
Bucladesina/farmacología , Proliferación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Repitelización/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/trasplante , Humanos , Degeneración Macular/terapia , Terapia Molecular Dirigida/métodos , Repitelización/fisiología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136132

RESUMEN

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Pirrolidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Fibroblastos/efectos de los fármacos , Vía de Señalización Hippo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células MCF-7 , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Pirrolidinas/química , Relación Estructura-Actividad , Sulfonamidas/química , Tetrahidroisoquinolinas/química , Factores de Transcripción , Proteínas Señalizadoras YAP
4.
PLoS One ; 6(11): e27746, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140466

RESUMEN

Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Transcriptional dysregulation is a major molecular feature of HD, which significantly contributes to disease progression. Therefore, the development of histone deacetylase (HDAC) inhibitors as therapeutics for HD has been energetically pursued. Suberoylanilide hydroxamic acid (SAHA) - a class I HDAC as well an HDAC6 inhibitor, improved motor impairment in the R6/2 mouse model of HD. Recently it has been found that SAHA can also promote the degradation of HDAC4 and possibly other class IIa HDACs at the protein level in various cancer cell lines. To elucidate whether SAHA is a potent modifier of HDAC protein levels in vivo, we performed two independent mouse trials. Both WT and R6/2 mice were chronically treated with SAHA and vehicle. We found that prolonged SAHA treatment causes the degradation of HDAC4 in cortex and brain stem, but not hippocampus, without affecting its transcript levels in vivo. Similarly, SAHA also decreased HDAC2 levels without modifying the expression of its mRNA. Consistent with our previous data, SAHA treatment diminishes Hdac7 transcript levels in both wild type and R6/2 brains and unexpectedly was found to decrease Hdac11 in R6/2 but not wild type. We investigated the effects of SAHA administration on well-characterised molecular readouts of disease progression. We found that SAHA reduces SDS-insoluble aggregate load in the cortex and brain stem but not in the hippocampus of the R6/2 brains, and that this was accompanied by restoration of Bdnf cortical transcript levels.


Asunto(s)
Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Ácidos Hidroxámicos/uso terapéutico , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Exones/genética , Histona Desacetilasa 2/genética , Histona Desacetilasas/genética , Ácidos Hidroxámicos/administración & dosificación , Ácidos Hidroxámicos/farmacología , Ratones , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vorinostat
5.
J Neurosci ; 28(42): 10720-33, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923047

RESUMEN

Transcriptional dysregulation is a central pathogenic mechanism in Huntington's disease, a fatal neurodegenerative disorder associated with polyglutamine (polyQ) expansion in the huntingtin (Htt) protein. In this study, we show that mutant Htt alters the normal expression of specific mRNA species at least partly by disrupting the binding activities of many transcription factors which govern the expression of the dysregulated mRNA species. Chromatin immunoprecipitation (ChIP) demonstrates Htt occupation of gene promoters in vivo in a polyQ-dependent manner, and furthermore, ChIP-on-chip and ChIP subcloning reveal that wild-type and mutant Htt exhibit differential genomic distributions. Exon 1 Htt binds DNA directly in the absence of other proteins and alters DNA conformation. PolyQ expansion increases Htt-DNA interactions, with binding to recognition elements of transcription factors whose function is altered in HD. Together, these findings suggest mutant Htt modulates gene expression through abnormal interactions with genomic DNA, altering DNA conformation and transcription factor binding.


Asunto(s)
Proteínas de Unión al ADN/fisiología , ADN/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Péptidos/fisiología , Regiones Promotoras Genéticas/fisiología , Transcripción Genética/fisiología , Animales , Línea Celular Transformada , ADN/antagonistas & inhibidores , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Péptidos/química , Péptidos/genética , Unión Proteica/fisiología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
6.
J Exp Med ; 205(8): 1869-77, 2008 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-18625748

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.


Asunto(s)
Enfermedad de Huntington/inmunología , Animales , Estudios de Casos y Controles , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Modelos Inmunológicos , Monocitos/inmunología , Monocitos/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Expansión de Repetición de Trinucleótido
7.
J Neurosci ; 26(52): 13548-55, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17192438

RESUMEN

Adenosine A2A receptor antagonists provide a promising nondopaminergic approach to the treatment of Parkinson's disease (PD). Initial clinical trials of A2A antagonists targeted PD patients who had already developed treatment complications known as L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve symptoms while reducing existing LID. The goal of this study is to explore the effect of A2A antagonists and targeted A2A receptor depletion on the actual development of sensitized responses to L-DOPA in mouse models of LID in PD. Hemiparkinsonian mice (unilaterally lesioned with 6-OHDA) were treated daily for 3 weeks with a low dose of L-DOPA (2 mg/kg) preceded by a low dose of selective A2A antagonist (KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione] at 0.03 or 0.3 mg/kg, or SCH58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] at 0.03 mg/kg) or vehicle intraperitoneally. In control mice, contralateral rotational responses to daily L-DOPA gradually increased over the initial week before reaching a persistent maximum. Both A2A antagonists inhibited the development of sensitized contralateral turning, with KW-6002 pretreatment reducing the sensitized rotational responses by up to threefold. The development of abnormal involuntary movements (a measure of LID) as well as rotational responses was attenuated by the postnatal depletion of forebrain A2A receptors in conditional (Cre/loxP system) knock-out mice. These pharmacological and genetic data provide evidence that striatal A2A receptors play an important role in the neuroplasticity underlying behavioral sensitization to L-DOPA, supporting consideration of early adjunctive therapy with an A2A antagonist to reduce the risk of LID in PD.


Asunto(s)
Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Trastornos Parkinsonianos/metabolismo , Prosencéfalo/fisiología , Receptor de Adenosina A2A/fisiología , Antagonistas del Receptor de Adenosina A2 , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Purinas/farmacología , Purinas/uso terapéutico , Receptor de Adenosina A2A/genética
8.
J Biol Chem ; 281(24): 16672-80, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16595660

RESUMEN

Interactions between mutant huntingtin (Htt) and a variety of transcription factors including specificity proteins (Sp) have been suggested as a central mechanism in Huntington disease (HD). However, the transcriptional activity induced by Htt in neurons that triggers neuronal death has yet to be fully elucidated. In the current study, we characterized the relationship of Sp1 to Htt protein aggregation and neuronal cell death. We found increased levels of Sp1 in neuronal-like PC12 cells expressing mutant Htt, primary striatal neurons, and brain tissue of HD transgenic mice. Sp1 levels were also elevated when 3-nitropropionate (3-NP) was used to induce cell death in PC12 cells. To assess the effects of knocking down Sp1 in HD pathology, we used Sp1 siRNA, a heterozygous Sp1 knock-out mouse, and mithramycin A, a DNA-intercalating agent that inhibits Sp1 function. The three approaches consistently yielded reduced levels of Sp1 which ameliorated toxicity caused by either mutant Htt or 3-NP. In addition, when HD mice were crossed with Sp1 heterozygous knock-out mice, the resulting offspring did not experience the loss of dopamine D2 receptor mRNA characteristic of HD mice, and survived longer than their HD counterparts. Our data suggest that enhancement of transcription factor Sp1 contributes to the pathology of HD and demonstrates that its suppression is beneficial.


Asunto(s)
Enfermedad de Huntington/genética , Fármacos Neuroprotectores/farmacología , Factor de Transcripción Sp1/biosíntesis , Factor de Transcripción Sp1/fisiología , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Femenino , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Células PC12 , Ratas
9.
Hum Mol Genet ; 14(20): 3065-78, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16183657

RESUMEN

In postmortem Huntington's disease brains, mutant htt is present in both nuclear and cytoplasmic compartments. To dissect the impact of nuclear and extranuclear mutant htt on the initiation and progression of disease, we generated a series of transgenic mouse lines in which nuclear localization or nuclear export signal sequences have been placed N-terminal to the htt exon 1 protein carrying 144 glutamines. Our data indicate that the exon 1 mutant protein is present in the nucleus as part of an oligomeric or aggregation complex. Increasing the concentration of the mutant transprotein in the nucleus is sufficient for and dramatically accelerates the onset and progression of behavioral phenotypes. Furthermore, nuclear exon 1 mutant protein is sufficient to induce cytoplasmic neurodegeneration and transcriptional dysregulation. However, our data suggest that cytoplasmic mutant exon 1 htt, if present, contributes to disease progression.


Asunto(s)
Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Péptidos/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina , Sustancias Macromoleculares , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Transcripción Genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA