Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
bioRxiv ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39386464

RESUMEN

Oncogenic growth places great strain and dependence on the proteostasis network. This has made proteostasis pathways attractive therapeutic targets in cancer, but efforts to drug these pathways have yielded disappointing clinical outcomes. One exception is proteasome inhibitors, which are approved for frontline treatment of multiple myeloma. However, proteasome inhibitors are largely ineffective for treatment of other cancers, including acute myeloid leukemia (AML), although reasons for these differences are unknown. Here, we determined that proteasome inhibitors are ineffective in AML due to inability to disrupt proteostasis. In response to proteasome inhibition, AML cells activated HSF1 and autophagy, two key stem cell proteostasis pathways, to prevent unfolded protein accumulation. Inactivation of HSF1 sensitized human AML cells to proteasome inhibition, marked by unfolded protein accumulation, activation of the PERK-mediated integrated stress response, severe reductions in protein synthesis, proliferation and cell survival, and significant slowing of disease progression and extension of survival in vivo . Similarly, combined autophagy and proteasome inhibition suppressed proliferation, synergistically killed AML cells, and significantly reduced AML burden and extended survival in vivo . Furthermore, autophagy and proteasome inhibition preferentially suppressed protein synthesis and induced apoptosis in primary patient AML cells, including AML stem/progenitor cells, without severely affecting normal hematopoietic stem/progenitor cells. Combined autophagy and proteasome inhibition also activated the integrated stress response, but surprisingly this occurred in a PKR-dependent manner. These studies unravel how proteostasis pathways are co-opted to promote AML growth, progression and drug resistance, and reveal that disabling the proteostasis network is a promising strategy to therapeutically target AML.

2.
Plant Cell ; 35(7): 2678-2693, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017144

RESUMEN

Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Cinesinas/metabolismo , División Celular Asimétrica , Citocinesis/genética , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Miosinas/genética , Miosinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Cell Stem Cell ; 30(4): 460-472.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948186

RESUMEN

Hematopoietic stem cells (HSCs) regenerate blood cells throughout life. To preserve their fitness, HSCs are particularly dependent on maintaining protein homeostasis (proteostasis). However, how HSCs purge misfolded proteins is unknown. Here, we show that in contrast to most cells that primarily utilize the proteasome to degrade misfolded proteins, HSCs preferentially traffic misfolded proteins to aggresomes in a Bag3-dependent manner and depend on aggrephagy, a selective form of autophagy, to maintain proteostasis in vivo. When autophagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. Bag3-deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity. Furthermore, HSC aging is associated with a severe loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus specifically configured in young adult HSCs to preserve proteostasis and fitness but become dysregulated during aging.


Asunto(s)
Macroautofagia , Proteostasis , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia , Factores de Transcripción/metabolismo , Células Madre Hematopoyéticas/metabolismo
4.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263569

RESUMEN

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos CD28/metabolismo , Humanos , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/metabolismo
5.
Mol Ther Oncolytics ; 24: 417-428, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35141398

RESUMEN

Adoptive T cell therapy (ACT) with expanded tumor-infiltrating lymphocytes (TIL) can induce durable responses in cancer patients from multiple histologies, with response rates of up to 50%. Antibodies blocking the engagement of the inhibitory receptor programmed cell death protein 1 (PD-1) have been successful across a variety of cancer diagnoses. We hypothesized that these approaches could be combined by using CRISPR-Cas9 gene editing to knock out PD-1 in TILs from metastatic melanoma and head-and-neck, thyroid, and colorectal cancer. Non-viral, non-plasmid-based PD-1 knockout was carried out immediately prior to the traditional 14-day TIL-based ACT rapid-expansion protocol. A median 87.53% reduction in cell surface PD-1 expression was observed post-expansion and confirmed at the genomic level. No off-target editing was detected, and PD-1 knockout had no effect on final fold expansion. Edited cells exhibited few phenotypic differences and matched control functionality. Pre-clinical-scale results were confirmed at a clinical scale by generating a PD-1-deficient TIL product using the good manufacturing practice facilities, equipment, procedures, and starting material used for standard patient treatment. Our results demonstrate that simple, non-viral, non-plasmid-based CRISPR-Cas9 methods can be feasibly adopted into a TIL-based ACT protocol to produce treatment products deficient in molecules such as PD-1, without any evident negative effects.

6.
Adv Exp Med Biol ; 1325: 25-60, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495529

RESUMEN

Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Mucinas , Animales , Glicosilación , Humanos , Mucinas/genética , Mucinas/metabolismo , Polisacáridos , Procesamiento Proteico-Postraduccional
7.
Mol Cell ; 81(17): 3468-3480.e7, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34314700

RESUMEN

HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors, including Mcl1, p53, DDIT4, and Myc. Although mutations in HUWE1 and related HECT ligases are widely implicated in human disease, our molecular understanding remains limited. Here we present a comprehensive investigation of full-length HUWE1, deepening our understanding of this class of enzymes. The N-terminal ∼3,900 amino acids of HUWE1 are indispensable for proper ligase function, and our cryo-EM structures of HUWE1 offer a complete molecular picture of this large HECT ubiquitin ligase. HUWE1 forms an alpha solenoid-shaped assembly with a central pore decorated with protein interaction modules. Structures of HUWE1 variants linked to neurodevelopmental disorders as well as of HUWE1 bound to a model substrate link the functions of this essential enzyme to its three-dimensional organization.


Asunto(s)
Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Microscopía por Crioelectrón/métodos , Células HEK293 , Humanos , Estrés Fisiológico/fisiología , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
FEBS Open Bio ; 11(6): 1638-1644, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838073

RESUMEN

Dysregulation of interleukin-33 (IL-33) has been implicated in the pathogenesis of several autoimmune and inflammatory diseases, but few studies have examined transcriptional regulation of the IL33 gene. In the intestines, gene regulation is controlled by a transcription factor network of which the intestinal-specific transcription factor CDX2 is a key component. In this study, we investigated whether CDX2 regulates IL33 mRNA expression. We examined IL33 mRNA expression in primary colonic epithelial cells from healthy humans and epithelial cell lines, revealing high expression levels in primary colonic and LS174T cells. Combining genomics data (ChIP-seq, RNA-seq) and IL33 promoter analyses in LS174T cells revealed intronic enhancer activity in the IL33 gene that is dependent on CDX2 expression. Western blotting and qRT-PCR confirmed that IL33 expression is upregulated in a CDX2 concentration-dependent manner, thereby providing the first evidence that CDX2 regulates the expression of IL33.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Células Epiteliales/metabolismo , Interleucina-33/genética , Intestinos/metabolismo , Factor de Transcripción CDX2/genética , Humanos , Interleucina-33/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Tumorales Cultivadas
9.
J Microsc ; 283(1): 9-20, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33482682

RESUMEN

In pathology protocols, a tissue block, such as one containing a mouse brain or a biopsy sample from a patient, can produce several hundred thin sections. Substantial time may be required to analyse all sections. In cases of uncertainty regarding which sections to focus on, noninvasive scout imaging of intact blocks can help in guiding the pathology procedure. The scouting step is ideally done in a time window of minutes without special sample preparation that may interfere with the pathology procedures. The challenge is to obtain some visibility of unstained tissue structures at sub-10 µm resolution. We explored a novel x-ray tomosynthesis method as a way to maximise contrast-to-noise ratio, a determinant of tissue visibility. It provided a z-stack of thousands of images at 7.3 µm resolution (10% contrast, half-period of 68.5 line pairs/mm), in scans of 5-15 minutes. When compared with micro-CT scans, the straight-line tomosynthesis scan did not need to rotate the sample, which allowed flat samples, such as paraffin blocks, to be kept as close as possible to the x-ray source. Thus, given the same hardware, scan time and resolution, this mode maximised the photon flux density through the sample, which helped in maximising the contrast-to-noise ratio. The tradeoff of tomosynthesis is incomplete 3D information. The microtomosynthesis scanner has scanned 110 unstained human and animal tissue samples as part of their respective pathology protocols. In all cases, the z-stack of images showed tissue structures that guided sectioning or provided correlative structural information. We describe six examples that presented different levels of visibility of soft tissue structures. Additionally, in a set of coronary artery samples from an HIV patient donor, microtomosynthesis made a new discovery of isolated focal calcification in the internal elastic lamina of coronary wall, which was the onset of medial calcific sclerosis in the arteries.


A microscopy version of the imaging method for 3D luggage screening has been adapted to image unstained pathology samples. Pathology tests of tissue samples are used for clinical diagnosis and for biomedical research. The tissue samples are often embedded in paraffin blocks and sectioned into many thin slices, which are then stained with the appropriate agents for light microscopy. Since each tissue block can produce several hundred thin sections, much time and labour is required to analyse all sections. Noninvasive scout imaging of intact blocks can help in guiding the pathology procedure. The scouting step is ideally done in a time window of minutes without special sample preparation that may interfere with the pathology procedures. The challenge is to obtain some visibility of unstained tissue structures at sufficient resolution. X-ray imaging is a promising tool to meet the challenge since x-rays can penetrate thick samples that are opaque to visible light. With x-ray imaging, a determinant of tissue visibility is the flux density of photons that illuminate the sample. We explored a novel x-ray tomosynthesis method as a way to maximise this factor. It provided a stack of thousands of cross-sectional images at 7.3 µm resolution (half-period of 68.5 line pairs/mm) in scans of 5-15 minutes. When compared with micro-CT scans (a widely used laboratory technology), this method did not need to rotate the sample, which allowed flat samples such as paraffin blocks to be kept as close as possible to the x-ray source. Thus, given the same hardware, scan time and resolution, this method maximised the photon flux density through the sample, which helped in improving the visibility of unstained tissue under x-ray. The tradeoff of the method is incomplete 3D information. Over 100 unstained human and animal tissue samples have been scanned with this method as part of their respective pathology protocols. In all cases, the stack of cross-sectional images showed tissue structures that guided pathology analysis or provided correlative structural information. We describe six examples that presented different levels of tissue visibility. Additionally, in a set of coronary artery samples from an HIV patient donor, microtomosynthesis made a new discovery of isolated focal calcification in the internal elastic lamina of coronary wall, which was the onset of medial calcific sclerosis in the arteries.


Asunto(s)
Infecciones por VIH , Imagenología Tridimensional , Animales , Humanos , Ratones , Radiografía , Calcificación Vascular , Microtomografía por Rayos X , Rayos X
10.
Mol Cancer Ther ; 19(10): 2068-2078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747418

RESUMEN

The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoconjugados/farmacología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología
11.
ACS Chem Biol ; 15(8): 2247-2258, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32706237

RESUMEN

Throughout their cellular lifetime, RNA transcripts are bound to proteins, playing crucial roles in RNA metabolism, trafficking, and function. Despite the importance of these interactions, identifying the proteins that interact with an RNA of interest in mammalian cells represents a major challenge in RNA biology. Leveraging the ability to site-specifically and covalently label an RNA of interest using E. coli tRNA guanine transglycosylase and an unnatural nucleobase substrate, we establish the identification of RNA-protein interactions and the selective enrichment of cellular RNA in mammalian systems. We demonstrate the utility of this approach through the identification of known binding partners of 7SK snRNA via mass spectrometry. Through a minimal 4-nucleotide mutation of the long noncoding RNA HOTAIR, enzymatic biotinylation enables identification of putative HOTAIR binding partners in MCF7 breast cancer cells that suggest new potential pathways for oncogenic function. Furthermore, using RNA sequencing and qPCR, we establish that an engineered enzyme variant achieves high levels of labeling selectivity against the human transcriptome allowing for 145-fold enrichment of cellular RNA directly from mammalian cell lysates. The flexibility and breadth of this approach suggests that this system could be routinely applied to the functional characterization of RNA, greatly expanding the toolbox available for studying mammalian RNA biology.


Asunto(s)
Cromatografía de Afinidad/métodos , Pentosiltransferasa/metabolismo , Proteínas/metabolismo , ARN/metabolismo , Secuencia de Bases , Biotinilación , Northern Blotting , Western Blotting , Células HeLa , Humanos , Mutación , Conformación de Ácido Nucleico , Proteínas/química , Proteómica , ARN/química
12.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437509

RESUMEN

Blockade antibodies of the immunoinhibitory receptor PD-1 can stimulate the anti-tumor activity of T cells, but clinical benefit is limited to a fraction of patients. Evidence suggests that BTLA, a receptor structurally related to PD-1, may contribute to resistance to PD-1 targeted therapy, but how BTLA and PD-1 differ in their mechanisms is debated. Here, we compared the abilities of BTLA and PD-1 to recruit effector molecules and to regulate T cell signaling. While PD-1 selectively recruited SHP2 over the stronger phosphatase SHP1, BTLA preferentially recruited SHP1 to more efficiently suppress T cell signaling. Contrary to the dominant view that PD-1 and BTLA signal exclusively through SHP1/2, we found that in SHP1/2 double-deficient primary T cells, PD-1 and BTLA still potently inhibited cell proliferation and cytokine production, albeit more transiently than in wild type T cells. Thus, PD-1 and BTLA can suppress T cell signaling through a mechanism independent of both SHP1 and SHP2.


Asunto(s)
Proliferación Celular/genética , Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Inmunológicos/metabolismo , Linfocitos T/metabolismo , Animales , Complejo CD3/genética , Complejo CD3/metabolismo , Proliferación Celular/efectos de los fármacos , Cromatografía Liquida , Citocinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Interleucina-2/metabolismo , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Receptor de Muerte Celular Programada 1/genética , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Receptores Inmunológicos/genética , Proteínas Recombinantes , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/enzimología , Linfocitos T/inmunología , Espectrometría de Masas en Tándem
13.
EMBO Rep ; 21(6): e48885, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329196

RESUMEN

Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.


Asunto(s)
N-Acetilgalactosaminiltransferasas , Diferenciación Celular , Epitelio/metabolismo , Glicosilación , Humanos , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Polisacáridos , Procesamiento Proteico-Postraduccional
14.
Gastric Cancer ; 23(5): 811-823, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32215766

RESUMEN

BACKGROUND: Gastric cancer is the fifth most common cancer and the third cause of global cancer mortality. CDX2 is an intestinal differentiation marker with prognostic value in gastric cancer and transcriptionally regulates the expression of glycoprotein A33 (GPA33) and liver intestine cadherin (LI-cadherin). METHODS: This study evaluated the clinical significance of the combined expression of CDX2 and its targets GPA33 and LI-cadherin in gastric cancer by fluorescence-based multiplex immunohistochemistry together with digital image analysis and chromogenic immunohistochemistry in 329 gastric cancer samples arranged in tissue microarrays. Additionally, publicly available RNA-seq expression data from 354 gastric cancer samples from the TCGA database were used to validate the immunohistochemistry results. RESULTS: Expression of the three markers (CDX2, GPA33, and LI-cadherin) was strongly correlated, defining an intestinal differentiation panel. Low or negative protein expression of the intestinal differentiation panel identified patients with particularly poor overall survival, irrespective of the methodology used, and was validated in the independent series at the RNA-seq level. CONCLUSIONS: Expression of the intestinal differentiation panel (CDX2, GPA33, and LI-cadherin) defines a set of biomarkers with a strong biological rationale and favourable impact for prognostication of gastric cancer patients.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Biomarcadores de Tumor/metabolismo , Factor de Transcripción CDX2/metabolismo , Cadherinas/metabolismo , Intestinos/citología , Glicoproteínas de Membrana/metabolismo , Neoplasias Gástricas/patología , Anciano , Diferenciación Celular , Femenino , Estudios de Seguimiento , Humanos , Masculino , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirugía , Tasa de Supervivencia
15.
Tomography ; 5(2): 233-238, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31245544

RESUMEN

Ultrahigh-resolution, low-dose rescans in a region of interest following a general screening computed tomography (CT) scan is motivated by the need to reduce invasive tissue biopsy procedures in cancer screening. We describe a new method to meet the conflicting demands of ultrahigh resolution, high-speed and ultralow-dose, and the first proof-of-concept experiment. With improving detector resolution, the limiting factor for the system resolution of whole-body CT scanners shifts to the penumbra of the source focal spot. The penumbra unsharpness is minimized by inserting flat-panel detector(s) that are in direct contact with the body. In the hybrid system, the detector insert and the CT detector acquire data simultaneously, whereby the standard CT images give the position and orientation of the detector insert(s) as needed for tomosynthesis reconstruction. Imaging tests were performed with a compact photon-counting detector insert on resolution targets of both high- and low-contrast as well as a mouse specimen, all inside a body phantom. Detector insert tomosynthesis provided twice the resolution of the CT scanner alone at the same dose concentration. The short 2-cm beam collimation of the tomosynthesis rescan gave an effective dose equivalent to 6% of an average CT scan in the chest or abdomen.


Asunto(s)
Fantasmas de Imagen , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Imagen de Cuerpo Entero/métodos , Diseño de Equipo
16.
BMC Biotechnol ; 19(1): 36, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208390

RESUMEN

BACKGROUND: CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand. RESULTS: In this study we investigated the feasibility of improving CRISPR/Cas9 editing efficiency by Fluorescence Activated Cell Sorting (FACS) of protoplasts. We used Agrobacterium infiltration in leaves of Nicotiana benthamiana for delivery of viral replicons for high level expression of gRNAs designed to target two loci in the genome, NbPDS and NbRRA, together with the Cas9 nuclease in fusion with the 2A self-splicing sequence and GFP (Cas9-2A-GFP). Protoplasts isolated from the infiltrated leaves were then subjected to FACS for selection of GFP enriched protoplast populations. This procedure resulted in a 3-5 fold (from 20 to 30% in unsorted to more than 80% in sorted) increase in mutation frequencies as evidenced by restriction enzyme analysis and the Indel Detection by Amplicon Analysis, which allows for high throughput profiling and quantification of the generated mutations. CONCLUSIONS: FACS of protoplasts expressing GFP tagged CRISPR/Cas9, delivered through A. tumefaciens leaf infiltration, facilitated clear CRISPR/Cas9 mediated mutation enrichment in selected protoplast populations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Proteínas Fluorescentes Verdes/metabolismo , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Protoplastos/metabolismo , Citometría de Flujo , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente , Mutación , Hojas de la Planta/citología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Protoplastos/citología , Nicotiana/citología , Nicotiana/genética
17.
Mol Cell Proteomics ; 18(7): 1396-1409, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31040225

RESUMEN

Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.


Asunto(s)
Glicómica , Proteómica , Glicopéptidos/metabolismo , Glicosilación , Células HEK293 , Células Hep G2 , Humanos , Proteoma/metabolismo
18.
Nat Commun ; 10(1): 1785, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040271

RESUMEN

Lysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features. Here we present a comprehensive gene engineering screen in Chinese hamster ovary cells that enables production of lysosomal enzymes with N-glycans custom designed to affect key glycan features guiding cellular uptake and circulation. We demonstrate distinct circulation time and organ distribution of selected glycoforms of α-galactosidase A in a Fabry disease mouse model, and find that an α2-3 sialylated glycoform designed to eliminate uptake by the mannose 6-phosphate and mannose receptors exhibits improved circulation time and targeting to hard-to-reach organs such as heart. The developed design matrix and engineered CHO cell lines enables systematic studies towards improving enzyme replacement therapeutics.


Asunto(s)
Lisosomas/enzimología , Animales , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Glicosilación , Masculino , Ratones , Ratones Noqueados , Proteínas Recombinantes/uso terapéutico , alfa-Galactosidasa/uso terapéutico
19.
J Biol Chem ; 293(49): 19064-19077, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30327431

RESUMEN

The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.


Asunto(s)
N-Acetilgalactosaminiltransferasas/metabolismo , Proteoma/metabolismo , Secuencia de Aminoácidos , Glicosilación , Células HEK293 , Humanos , Isoenzimas/metabolismo , Proteómica/métodos , Polipéptido N-Acetilgalactosaminiltransferasa
20.
Methods Mol Biol ; 1844: 363-384, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242721

RESUMEN

Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.


Asunto(s)
Proteoma , Proteómica , Ubiquitina/metabolismo , Cromatografía de Afinidad , Cromatografía Liquida , Humanos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Espectrometría de Masas en Tándem , Ubiquitina/química , Ubiquitina/aislamiento & purificación , Ubiquitinación , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA