Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36880392

RESUMEN

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Animales , Humanos , Ratones , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/química , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/terapia , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Fenotipo , Calidad de Vida
2.
J Cell Sci ; 127(Pt 24): 5253-60, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25335889

RESUMEN

Phosphoinositide 3-kinase (PI3K) and PTEN have been shown to participate in synaptic plasticity during long-term potentiation (LTP) and long-term depression (LTD), respectively. Nevertheless, the dynamics of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and the regulation of its synthesis and degradation at synaptic compartments is far from clear. Here, we have used fluorescence resonance energy transfer (FRET) imaging to monitor changes in PIP3 levels in dendritic spines from CA1 hippocampal neurons under basal conditions and upon induction of NMDA receptor (NMDAR)-dependent LTD and LTP. We found that PIP3 undergoes constant turnover in dendritic spines. Contrary to expectations, both LTD and LTP induction trigger an increase in PIP3 synthesis, which requires NMDARs and PI3K activity. Using biochemical methods, the upregulation of PIP3 levels during LTP was estimated to be twofold. However, in the case of LTD, PTEN activity counteracts the increase in PIP3 synthesis, resulting in no net change in PIP3 levels. Therefore, both LTP and LTD signaling converge towards PIP3 upregulation, but PTEN acts as an LTD-selective switch that determines the outcome of PIP3 accumulation.


Asunto(s)
Espinas Dendríticas/metabolismo , Depresión Sináptica a Largo Plazo , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Regulación hacia Arriba , Animales , Transferencia Resonante de Energía de Fluorescencia , Potenciación a Largo Plazo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 111(1): E149-58, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367106

RESUMEN

Ghrelin is a peptide mainly produced by the stomach and released into circulation, affecting energy balance and growth hormone release. These effects are guided largely by the expression of the ghrelin receptor growth hormone secretagogue type 1a (GHS-R1a) in the hypothalamus and pituitary. However, GHS-R1a is expressed in other brain regions, including the hippocampus, where its activation enhances memory retention. Herein we explore the molecular mechanism underlying the action of ghrelin on hippocampal-dependent memory. Our data show that GHS-R1a is localized in the vicinity of hippocampal excitatory synapses, and that its activation increases delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic-type receptors (AMPARs) to synapses, producing functional modifications at excitatory synapses. Moreover, GHS-R1a activation enhances two different paradigms of long-term potentiation in the hippocampus, activates the phosphatidylinositol 3-kinase, and increases GluA1 AMPAR subunit and stargazin phosphorylation. We propose that GHS-R1a activation in the hippocampus enhances excitatory synaptic transmission and synaptic plasticity by regulating AMPAR trafficking. Our study provides insights into mechanisms that may mediate the cognition-enhancing effect of ghrelin, and suggests a possible link between the regulation of energy metabolism and learning.


Asunto(s)
Regulación de la Expresión Génica , Ghrelina/fisiología , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Electrofisiología , Metabolismo Energético , Ghrelina/metabolismo , Aprendizaje , Potenciación a Largo Plazo/fisiología , Memoria , Péptidos/química , Fosforilación , Ratas , Transducción de Señal , Transmisión Sináptica
4.
EMBO J ; 32(16): 2287-99, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23881099

RESUMEN

The microtubule-associated protein 1B (MAP1B) plays critical roles in neurite growth and synapse maturation during brain development. This protein is well expressed in the adult brain. However, its function in mature neurons remains unknown. We have used a genetically modified mouse model and shRNA techniques to assess the role of MAP1B at established synapses, bypassing MAP1B functions during neuronal development. Under these conditions, we found that MAP1B deficiency alters synaptic plasticity by specifically impairing long-term depression (LTD) expression. Interestingly, this is due to a failure to trigger AMPA receptor endocytosis and spine shrinkage during LTD. These defects are accompanied by an impaired targeting of the Rac1 activator Tiam1 at synaptic compartments. Accordingly, LTD and AMPA receptor endocytosis are restored in MAP1B-deficient neurons by providing additional Rac1. Therefore, these results indicate that the MAP1B-Tiam1-Rac1 relay is essential for spine structural plasticity and removal of AMPA receptors from synapses during LTD. This work highlights the importance of MAPs as signalling hubs controlling the actin cytoskeleton and receptor trafficking during plasticity in mature neurons.


Asunto(s)
Endocitosis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/deficiencia , Neuropéptidos , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , Columna Vertebral/citología , Estadísticas no Paramétricas , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP rac1
5.
EMBO J ; 29(16): 2827-40, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20628354

RESUMEN

Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is an important regulator of phosphatidylinositol-(3,4,5,)-trisphosphate signalling, which controls cell growth and differentiation. However, PTEN is also highly expressed in the adult brain, in which it can be found in dendritic spines in hippocampus and other brain regions. Here, we have investigated specific functions of PTEN in the regulation of synaptic function in excitatory hippocampal synapses. We found that NMDA receptor activation triggers a PDZ-dependent association between PTEN and the synaptic scaffolding molecule PSD-95. This association is accompanied by PTEN localization at the postsynaptic density and anchoring within the spine. On the other hand, enhancement of PTEN lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses. This activity is specifically required for NMDA receptor-dependent long-term depression (LTD), but not for LTP or metabotropic glutamate receptor-dependent LTD. Therefore, these results reveal PTEN as a regulated signalling molecule at the synapse, which is recruited to the postsynaptic membrane upon NMDA receptor activation, and is required for the modulation of synaptic activity during plasticity.


Asunto(s)
Depresión Sináptica a Largo Plazo , Fosfohidrolasa PTEN/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Dominios PDZ , Fosfohidrolasa PTEN/análisis , Ratas , Receptores AMPA/metabolismo , Columna Vertebral/ultraestructura , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA