Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Tob Induc Dis ; 222024.
Artículo en Inglés | MEDLINE | ID: mdl-38496254

RESUMEN

INTRODUCTION: Mesenchymal stromal cells (MSCs) play a crucial role in promoting tissue regeneration and healing, particularly in bone tissue. Both smoking and nicotine use are known to delay and inhibit the healing process in patients. This study aims at delineating these cellular effects by comparing the impact of nicotine alone to cigarette smoke with equivalent nicotine content, and shedding light on potential differences in the healing process. METHODS: We examined how cigarette smoke and nicotine affect the migration, proliferation, and osteogenic differentiation of human patient-derived MSCs in vitro, as well as the secretion of cytokines IL-6 and IL-8. We measured nicotine concentration of the cigarette smoke extract (CSE) to clarify the role of the nicotine in the effect of the cigarette smoke. RESULTS: MSCs exposed to nicotine-concentration-standardized CSE exhibited impaired wound healing capability, and at high concentrations, increased cell death. At lower concentrations, CSE dose-dependently impaired migration, proliferation, and osteogenic differentiation, and increased IL-8 secretion. Nicotine impaired proliferation and decreased PINP secretion. While there was a trend for elevated IL-6 levels by nicotine in undifferentiated MSCs, these changes were not statistically significant. Exposure of MSCs to equivalent concentrations of nicotine consistently elicited stronger responses by CSE and had a more pronounced effect on all studied parameters. Our results suggest that the direct effect of cigarette smoke on MSCs contributes to impaired MSC function, that adds to the nicotine effects. CONCLUSIONS: Cigarette smoke extract reduced the migration, proliferation, and osteogenic differentiation in MSCs in vitro, while nicotine alone reduced proliferation. Cigarette smoke impairs the osteogenic and regenerative ability of MSCs in a direct cytotoxic manner. Cytotoxic effect of nicotine alone impairs regenerative ability of MSCs, but it only partly explains cytotoxic effects of cigarette smoke. Direct effect of cigarette smoke, and partly nicotine, on MSCs could contribute to the smoking-related negative impact on long-term bone health, especially in bone healing.

2.
Front Cell Dev Biol ; 11: 1250000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020884

RESUMEN

Hypoxia-inducible factors (HIFs) are best known for their roles in the adaptation to low oxygen environments. Besides hypoxia, HIF-1/2 α-subunits are also regulated by various non-hypoxic stimuli including insulin which can act via the PI3K/protein kinase B (PKB) signaling pathway. However, with respect to insulin little is known about HIF-3α. We aimed to investigate this relationship and found that insulin stimulates HIF-3α expression under both normal and low oxygen conditions. Blocking PKB activity reversed the effects of insulin, indicating that HIF-3α is a direct target of PKB. We identified serine 524, located in the oxygen-dependent degradation domain of HIF-3α, as a phosphorylation site of PKB. Mutating serine 524 impaired binding of PKB to HIF-3α and its ubiquitination, suggesting that PKB regulates HIF-3α stability through phosphorylation, thereby affecting important cellular processes such as cell viability and cell adhesion. Importantly, we discovered that this phosphorylation site also influenced insulin-dependent cell migration. These findings shed light on a novel mechanism by which insulin affects PKB-dependent HIF-3α expression and activity, with potential implications in metabolic diseases and cancer.

3.
Environ Res ; 228: 115930, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37076033

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are stable organic chemicals, which have been used globally since the 1940s and have caused PFAS contamination around the world. This study explores perfluorooctanoic acid (PFOA) enrichment and destruction by a combined method of sorption/desorption and photocatalytic reduction. A novel biosorbent (PG-PB) was developed from raw pine bark by grafting amine groups and quaternary ammonium groups onto the surface of bark particles. The results of PFOA adsorption at low concentration suggest that PG-PB has excellent removal efficiency (94.8%-99.1%, PG-PB dosage: 0.4 g/L) to PFOA in the concentration range of 10 µg/L to 2 mg/L. The PG-PB exhibited high adsorption efficiency regarding PFOA, being 456.0 mg/g at pH 3.3 and 258.0 mg/g at pH 7 with an initial concentration of 200 mg/L. The groundwater treatment reduced the total concentration of 28 PFAS from 18 000 ng/L to 9900 ng/L with 0.8 g/L of PG-PB. Desorption experiments examined 18 types of desorption solutions, and the results showed that 0.05% NaOH and a mixture of 0.05% NaOH + 20% methanol were efficient for PFOA desorption from the spent PG-PB. More than 70% (>70 mg/L in 50 mL) and 85% (>85 mg/L in 50 mL) of PFOA were recovered from the first and second desorption processes, respectively. Since high pH promotes PFOA degradation, the desorption eluents with NaOH were directly treated with a UV/sulfite system without further adjustment. The final PFOA degradation and defluorination efficiency in the desorption eluents with 0.05% NaOH + 20% methanol reached 100% and 83.1% after 24 h reaction. This study proved that the combination of adsorption/desorption and a UV/sulfite system for PFAS removal is a feasible solution for environmental remediation.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Agua , Adsorción , Metanol , Hidróxido de Sodio , Fluorocarburos/análisis , Caprilatos , Contaminantes Químicos del Agua/análisis
4.
J Biol Chem ; 298(12): 102614, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265586

RESUMEN

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Asunto(s)
Prolil Hidroxilasas , Proteína Disulfuro Isomerasas , Humanos , Dominio Catalítico , Colágeno/metabolismo , Péptidos/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Conformación Proteica
5.
J Biol Chem ; 298(12): 102634, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273584

RESUMEN

Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.


Asunto(s)
Miosina Tipo IIB no Muscular , Plasmodium falciparum , Proteínas Protozoarias , Actinas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Miosinas/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
6.
Innate Immun ; 27(2): 158-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33445998

RESUMEN

Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Inmunoglobulina G/metabolismo , Periodontitis/inmunología , Porphyromonas gingivalis/fisiología , Receptores de Reconocimiento de Patrones/metabolismo , Acetaldehído/química , Acetaldehído/metabolismo , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Células Clonales , Epítopos de Linfocito B/metabolismo , Proteínas Fimbrias/metabolismo , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Inmunidad Innata , Inmunoglobulina G/aislamiento & purificación , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Malondialdehído/química , Malondialdehído/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Receptores de LDL/genética , Receptores de Reconocimiento de Patrones/aislamiento & purificación
7.
BMC Cardiovasc Disord ; 19(1): 306, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856737

RESUMEN

BACKGROUND: Calcific aortic valve disease (CAVD) is an atheroinflammatory process; finally it leads to progressive calcification of the valve. There is no effective pharmacological treatment for CAVD and many of the underlying molecular mechanisms remain unknown. We conducted a proteomic study to reveal novel factors associated with CAVD. METHODS: We compared aortic valves from patients undergoing valvular replacement surgery due to non-calcified aortic insufficiency (control group, n = 5) to a stenotic group (n = 7) using two-dimensional difference gel electrophoresis (2D-DIGE). Protein spots were identified with mass spectrometry. Western blot and immunohistochemistry were used to validate the results in a separate patient cohort and Ingenuity Pathway Analysis (IPA) was exploited to predict the regulatory network of CAVD. RESULTS: We detected an upregulation of complement 9 (C9), serum amyloid P-component (APCS) and transgelin as well as downregulation of heat shock protein (HSP90), protein disulfide isomerase A3 (PDIA3), annexin A2 (ANXA2) and galectin-1 in patients with aortic valve stenosis. The decreased protein expression of HSP90 was confirmed with Western blot. CONCLUSIONS: We describe here a novel data set of proteomic changes associated with CAVD, including downregulation of the pro-inflammatory cytosolic protein, HSP90.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/química , Válvula Aórtica/patología , Calcinosis/metabolismo , Proteínas HSP90 de Choque Térmico/análisis , Adulto , Anciano , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Proteómica , Transducción de Señal
8.
J Steroid Biochem Mol Biol ; 188: 172-184, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30562554

RESUMEN

Calcipotriol (MC903) is a side chain analogue of the biologically active 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Due to its anti-inflammatory and anti-proliferative effects on stromal cells, calcipotriol is a promising candidate for the local treatment of arthritis. In this preliminary work, we studied the pharmacokinetics and safety of calcipotriol after an IV (0.1 mg/kg given to one sheep) and intra-articular dose (0.054 mg/kg, 0.216 mg/kg and 0.560 mg/kg given to three sheep). The terminal half-life of calcipotriol was approximately 1 h after an IV dose. After intra-articular dosing, the systemic absorption was between 1 and 13% during the observed 24 h. Hypercalcemia or other clinical adverse effects did not occur in any animal during the study, and no macroscopic or microscopic alterations were seen in the synovium of the calcipotriol-injected knees compared to the vehicle knees. The in vitro metabolism of calcipotriol was analyzed with LC-MS from human synovial and mesenchymal stromal cell cultures. Both cell types were able to metabolize calcipotriol with MC1080 and MC1046 as the main metabolites. CYP24A1 transcripts were strongly induced by a 48-hour calcipotriol exposure in mesenchymal stromal cells, but not consistently in synovial stromal cells, as determined by RT-qPCR. Calcipotriol proved to be safe after a single intra-articular dose with applied concentrations, and it is metabolized by the cells of the joint. Slow dissolution of calcipotriol crystals in the joint can extend the pharmaceutical impact on the synovium, cartilage and subcortical bone.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Calcitriol/análogos & derivados , Células Madre Mesenquimatosas/metabolismo , Membrana Sinovial/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/sangre , Artritis/tratamiento farmacológico , Calcitriol/administración & dosificación , Calcitriol/sangre , Calcitriol/metabolismo , Calcitriol/farmacocinética , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ovinos , Membrana Sinovial/citología
9.
J Cell Mol Med ; 22(2): 968-981, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193784

RESUMEN

Understanding of timing of human parturition is incomplete. Therefore, we carried out proteomic analyses of full-term placentas from uncomplicated pregnancies to identify protein signatures associated with the onset of spontaneous delivery. We found quantitative associations of 10 proteins with spontaneous term birth, evident either in the basal or in the chorionic plates or in both. Additional 18 proteins were associated according to the location within placenta indicating local variations in protein amounts. Calcineurin-like phosphoesterase domain-containing 1 (CPPED1), a phosphatase previously suggested dephosphorylating AKT1/PKB, was one of the identified proteins. qRT-PCR revealed the mRNA level of CPPED1 was higher in elective caesarean deliveries than in spontaneous births, while immunohistochemistry showed CPPED1 in cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts. Noteworthy, phosphorylation status of AKT1 did not differ between placentas from elective caesarean and spontaneous deliveries. Additionally, analyses of samples from infants indicated that single-nucleotide polymorphisms rs11643593 and rs8048866 of CPPED1 were associated with duration of term pregnancy. Finally, post-transcriptional silencing of CPPED1 in cultured HTR8/SVneo cells by siRNAs affected gene expression in pathways associated with inflammation and blood vessel development. We postulate that functions regulated by CPPED1 in trophoblasts at choriodecidual interphase have a role in the induction of term labour, but it may be independent of AKT1.


Asunto(s)
Calcineurina/metabolismo , Nacimiento a Término/metabolismo , Trofoblastos/metabolismo , Calcineurina/genética , Vellosidades Coriónicas/metabolismo , Parto Obstétrico , Femenino , Proteína Forkhead Box O1/metabolismo , Silenciador del Gen , Edad Gestacional , Humanos , Recién Nacido , Inflamación/genética , Neovascularización Fisiológica/genética , Fenotipo , Fosforilación , Placenta/metabolismo , Placenta/patología , Polimorfismo de Nucleótido Simple/genética , Embarazo , Proteoma/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
10.
Sci Rep ; 7(1): 17220, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222481

RESUMEN

Hypoxia-inducible factor 1α (HIF1α) induces the expression of several hundred genes in hypoxia aiming at restoration of oxygen homeostasis. HIF prolyl-4-hydroxylases (HIF-P4Hs) regulate the stability of HIF1α in an oxygen-dependent manner. Hypoxia is a common feature in inflammation and cancer and the HIF pathway is closely linked with the inflammatory NF-κB and tumor suppressor p53 pathways. Here we show that genetic inactivation or chemical inhibition of HIF-P4H-1 leads to downregulation of proinflammatory genes, while proapoptotic genes are upregulated. HIF-P4H-1 inactivation reduces the inflammatory response under LPS stimulus in vitro and in an acute skin inflammation model in vivo. Furthermore, HIF-P4H-1 inactivation increases p53 activity and stability and hydroxylation of proline 142 in p53 has an important role in this regulation. Altogether, our data suggest that HIF-P4H-1 inhibition may be a promising therapeutic candidate for inflammatory diseases and cancer, enhancing the reciprocal negative regulation of the NF-κB and p53 pathways.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Caspasa 3/metabolismo , Línea Celular , Regulación hacia Abajo , Silenciador del Gen , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Proteolisis
11.
Biochem Biophys Res Commun ; 491(4): 953-957, 2017 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-28756229

RESUMEN

The Wnt proteins constitute a conserved family of secreted palmitoleate-containing signaling proteins that play important roles in development and tissue homeostasis. Their hydrophobic nature has raised the question of how the proteins are transported outside the cells. Accumulating evidence suggests that several different mechanisms, including transport by lipoprotein particles and exosomes, may contribute to this process. Here, we expressed epitope-tagged Wnt4 in HEK293 cells, and identified Mac-2 binding protein (Mac-2BP) as its binding partner in the serum-free conditioned medium. Serine-to-alanine substitution at the conserved fatty acid-conjugation site did not affect Mac-2BP binding. Subsequent studies showed that Mac-2BP may be a general Wnt interactor. It is found in the extracellular matrix (ECM) of various tissues, where it forms unusual oligomeric ring-like structures. Its functions appear to include interactions with cells and certain ECM components. Intriguingly, both Wnt signaling and Mac-2BP expression are upregulated in many types of cancer. Our studies on the four-domain Mac-2BP indicate a crucial role in Wnt binding for the C-terminal domain that bears no sequence similarity to any other protein. Mac-2BP may have a role in regulating the extracellular spreading and storage of the Wnts, thereby modulating their bioavailability and stability.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Wnt/metabolismo , Células HEK293 , Humanos
12.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1155-65, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084846

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by irreversible airflow limitation. Cigarette smoking represents the main risk factor, but the specific mechanisms of COPD are not completely understood. Our aim was to identify COPD-specific proteomic changes involved in disease onset and severity. A comparative proteomic analysis of 51 lung tissues from nonsmokers, smokers, smokers with mild to moderate (stage I-II) COPD, severe to very severe COPD (stage III-IV), and patients with α-1-antitrypsin deficiency (AATD) and idiopathic pulmonary fibrosis (IPF) was performed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Selected COPD-specific changes were validated by immunoblotting and further by ELISA in 120 induced sputum and plasma samples from nonsmokers, smokers, and patients with COPD (stage I-III). Altogether 82 altered proteins were identified comprising COPD-, AATD-, and IPF-specific, overlapping, and unspecific changes. Cathepsin D (CTSD), dihydropyrimidinase-related protein 2 (DPYSL2), transglutaminase 2 (TGM2), and tripeptidyl-peptidase 1 (TPP1) were validated as COPD-specific. TGM2 was not associated with smoking and correlated with COPD severity in lung tissue. TGM2 levels in sputum and plasma were elevated in patients with COPD (stage II-III) and correlated with lung function. In conclusion, new proteins related to COPD onset and severity could be identified with TGM2 being a novel potential diagnostic and therapeutic target for COPD. Further studies in carefully characterized cohorts are required to validate the identified changes.


Asunto(s)
Proteínas de Unión al GTP/sangre , Pulmón/enzimología , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Transglutaminasas/sangre , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Proteína Glutamina Gamma Glutamiltransferasa 2 , Proteoma/metabolismo , Proteómica , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/efectos adversos , Fumar/sangre , Tripeptidil Peptidasa 1
13.
PLoS One ; 9(11): e113498, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25419660

RESUMEN

Lysyl hydroxylase 3 (LH3) is a multifunctional protein with lysyl hydroxylase, galactosyltransferase and glucosyltransferase activities. The LH3 has been shown to modify the lysine residues both in collagens and also in some collagenous proteins. In this study we show for the first time that LH3 is essential for catalyzing formation of the glucosylgalactosylhydroxylysines of mannan-binding lectin (MBL), the first component of the lectin pathway of complement activation. Furthermore, loss of the terminal glucose units on the derivatized lysine residues in mouse embryonic fibroblasts lacking the LH3 protein leads to defective disulphide bonding and oligomerization of rat MBL-A, with a decrease in the proportion of the larger functional MBL oligomers. The oligomerization could be completely restored with the full length LH3 or the amino-terminal fragment of LH3 that possesses the glycosyltransferase activities. Our results confirm that LH3 is the only enzyme capable of glucosylating the galactosylhydroxylysine residues in proteins with a collagenous domain. In mice lacking the lysyl hydroxylase activity of LH3, but with untouched galactosyltransferase and glucosyltransferase activities, reduced circulating MBL-A levels were observed. Oligomerization was normal, however and residual lysyl hydroxylation was compensated in part by other lysyl hydroxylase isoenzymes. Our data suggest that LH3 is commonly involved in biosynthesis of collagenous proteins and the glucosylation of galactosylhydroxylysines residues by LH3 is crucial for the formation of the functional high-molecular weight MBL oligomers.


Asunto(s)
Lisina/metabolismo , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Multimerización de Proteína , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Glicosilación , Immunoblotting , Lisina/genética , Lectina de Unión a Manosa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Péptidos/química , Péptidos/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/metabolismo
14.
Structure ; 21(12): 2107-18, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24207127

RESUMEN

Collagen prolyl 4-hydroxylase (C-P4H) catalyzes the proline hydroxylation of procollagen, an essential modification in the maturation of collagens. C-P4H consists of two catalytic α subunits and two protein disulfide isomerase ß subunits. The assembly of these subunits is unknown. The α subunit contains an N domain (1-143), a peptide-substrate-binding-domain (PSB, 144-244) and a catalytic domain (245-517). Here, we report the dimeric structure of the N-terminal region (1-244) of the α subunit. It is shown that the N domain has an important role in the assembly of the C-P4H tetramer, by forming an extended four-helix bundle that includes an antiparallel coiled-coil dimerization motif between the two α subunits. Complexes of this construct with a C-P4H inhibitor and substrate show the mode of peptide-binding to the PSB domain. Both peptides adopt a poly-(L)-proline-type-II helix conformation and bind in a curved, asymmetric groove lined by conserved tyrosines and an Arg-Asp salt bridge.


Asunto(s)
Procolágeno-Prolina Dioxigenasa/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Especificidad por Sustrato
15.
Nature ; 483(7390): 484-8, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343896

RESUMEN

The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes, including the EGLN prolyl 4-hydroxylases that mark the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumours but can suppress tumour growth in some other contexts. IDH1 and IDH2, which catalyse the interconversion of isocitrate and 2-OG, are frequently mutated in human brain tumours and leukaemias. The resulting mutants have the neomorphic ability to convert 2-OG to the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). Here we show that (R)-2HG, but not (S)-2HG, stimulates EGLN activity, leading to diminished HIF levels, which enhances the proliferation and soft agar growth of human astrocytes. These findings define an enantiomer-specific mechanism by which the (R)-2HG that accumulates in IDH mutant brain tumours promotes transformation and provide a justification for exploring EGLN inhibition as a potential treatment strategy.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Dioxigenasas/metabolismo , Glutaratos/química , Glutaratos/farmacología , Proteínas Nucleares/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Dioxigenasas/genética , Activación Enzimática/efectos de los fármacos , Glioma/enzimología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Glutaratos/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Proteínas Nucleares/genética , Oncogenes , Procolágeno-Prolina Dioxigenasa/genética
16.
J Proteome Res ; 11(2): 599-608, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22053820

RESUMEN

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. However, the exact mechanisms leading to COPD and its progression are still poorly understood. In this study, induced sputum was analyzed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry to identify proteins involved in COPD pathogenesis. The comparison of nonsmokers, smokers, and smokers with moderate COPD revealed 15 changed proteins with the majority, including polymeric immunoglobulin receptor (PIGR), being elevated in smokers and subjects with COPD. PIGR, which is involved in specific immune defense and inflammation, was further studied in sputum, lung tissue, and plasma by Western blot, immunohistochemistry/image analysis, and/or ELISA. Sputum PIGR was characterized as glycosylated secretory component (SC). Lung PIGR was significantly elevated in the bronchial and alveolar epithelium of smokers and further increased in the alveolar area in mild to moderate COPD. Plasma PIGR was elevated in smokers and smokers with COPD compared to nonsmokers with significant correlation to obstruction. In conclusion, new proteins in smoking-related chronic inflammation and COPD could be identified, with SC/PIGR being one of the most prominent not only in the lung but also in circulating blood.


Asunto(s)
Proteoma/análisis , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de Inmunoglobulina Polimérica/análisis , Fumar/metabolismo , Esputo/química , Electroforesis en Gel Bidimensional , Humanos , Inmunohistoquímica , Proteoma/metabolismo , Proteómica/métodos , Alveolos Pulmonares/química , Alveolos Pulmonares/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/sangre , Receptores de Inmunoglobulina Polimérica/sangre , Receptores de Inmunoglobulina Polimérica/metabolismo , Fumar/sangre , Esputo/metabolismo
17.
Proteomics Clin Appl ; 4(1): 97-105, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21137019

RESUMEN

PURPOSE: Proteomic screening revealed declined levels of the receptor for advanced glycation end products (RAGE) in human idiopathic pulmonary fibrosis (IPF). This study was undertaken to investigate the different RAGE isoforms in two lung diseases with destruction of the lung parenchyma, i.e. IPF and chronic obstructive pulmonary disease (COPD). EXPERIMENTAL DESIGN: RAGE was analyzed by 2-DE, MS and Western blotting using lung tissues from non-smokers, smokers, patients with IPF, COPD and α-1-antitrypsin deficiency (AAT) and by ELISA from the bronchoalveolar lavage fluid samples. RESULTS: RAGE, detected by 2-DE in the control lung, was confirmed to be glycosylated, soluble, C-truncated RAGE with characteristics indicative of the presence of endogenous secretory RAGE (esRAGE). Further studies revealed a decrease of the full length-RAGE (FL-RAGE) and its C-terminal processed variant (cRAGE) in the lung tissues of IPF and COPD patients but not in AAT. The esRAGE level was reduced in IPF but was unchanged in COPD. CONCLUSIONS AND CLINICAL RELEVANCE: This study shows an involvement of the three RAGE variants (FL-RAGE, cRAGE, esRAGE) in IPF. The decline of FL-RAGE and cRAGE, but not esRAGE, in COPD lungs is evidence of involvement of specific RAGE variants also in this disease.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Proteómica/métodos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Líquido del Lavado Bronquioalveolar , Electroforesis en Gel Bidimensional , Ensayo de Inmunoadsorción Enzimática , Glicosilación , Humanos , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/aislamiento & purificación , Sarcoidosis Pulmonar/metabolismo , Eliminación de Secuencia , Fumar/metabolismo , alfa 1-Antitripsina/metabolismo
18.
Expert Rev Proteomics ; 6(6): 619-29, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19929608

RESUMEN

Parenchymal lung diseases comprise a wide variety of diseases, with different etiologies, pathogeneses and prognoses. This perspective provides an overview of two different disease types: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Chronic obstructive pulmonary disease, which is related to smoking, is one of the leading causes of chronic morbidity and mortality around the world, being characterized by airway obstruction and parenchymal lung damage (emphysema). Idiopathic pulmonary fibrosis of unknown etiology is classified as one of the most important idiopathic interstitial pneumonias and is connected to patchy but progressive lung fibrosis. Both diseases are generally diagnosed late and respond poorly to medical therapies. Although numerous biomarkers have been proposed for these diseases, they have not been validated or implemented into clinical practice. This perspective emphasizes some typical features of these diseases with different types of lung damage, how they are reflected in different samples, as well as potential advances and problems of current and future nonbiased proteomic approaches.


Asunto(s)
Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Pulmón/metabolismo , Pulmón/patología , Proteómica/métodos , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Radiografía
19.
J Biol Chem ; 278(22): 20154-61, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12654921

RESUMEN

A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.


Asunto(s)
Ácido Graso Desaturasas/química , NADH NADPH Oxidorreductasas , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Cartilla de ADN , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/aislamiento & purificación , Ácido Graso Desaturasas/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Mitocondrias Cardíacas/enzimología , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Homología de Secuencia de Aminoácido
20.
J Biol Chem ; 277(36): 33378-85, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12097327

RESUMEN

MARCO is a type II transmembrane protein of the class A scavenger receptor family. It has a short N-terminal cytoplasmic domain, a transmembrane domain, and a large extracellular part composed of a 75-residue long spacer domain, a 270-residue collagenous domain, and a 99-residue long scavenger receptor cysteine-rich (SRCR) domain. Previous studies have indicated a role for this receptor in anti-microbial host defense functions. In this work we have produced the extracellular part of MARCO as a recombinant protein, and analyzed its binding properties. The production of this protein, soluble MARCO (sMARCO), has made it possible for the first time to study MARCO and its binding properties in a cell-free system. Using circular dichroism analyses, a protease-sensitive assay, and rotary shadowing electron microscopy, sMARCO was shown to have a triple-helical collagenous structure. Rotary shadowing also demonstrated that the molecules often associate with each other via the globes. sMARCO was found to bind avidly both heat-killed and living bacteria. Lipopolysaccharide, an important component of the outer membrane of Gram-negative bacteria, was shown to be a ligand of MARCO. Studies with different bacterial strains indicated that the O-side chain of lipopolysaccharide is not needed for the bacterial recognition. Finally, the C-terminal SRCR domain was also produced as a recombinant protein, and its bacteria-binding capability was studied. Although the transfection experiments with transmembrane MARCO variants have indicated a crucial role for this domain in bacterial binding, the monomeric domain exhibited low, barely detectable bacteria-binding activity. Thus, it is possible that cooperation between the SRCR domain and the collagenous domain is needed for high-affinity bacterial binding, or that the SRCR domain has to be in a trimeric form to effectively bind to bacteria.


Asunto(s)
Receptores Inmunológicos/química , Amidohidrolasas/metabolismo , Línea Celular , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Humanos , Ligandos , Lipopolisacáridos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Receptores Inmunológicos/genética , Proteínas Recombinantes/metabolismo , Transfección , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA