Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Cancer Drug Targets ; 11(3): 254-84, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21247382

RESUMEN

The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique ß-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, chemotherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom's macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.


Asunto(s)
Antineoplásicos/uso terapéutico , Lactonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasoma , Pirroles/uso terapéutico , Animales , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
2.
Leukemia ; 21(1): 84-92, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17024115

RESUMEN

Proteasomal proteolysis relies on the activity of six catalytically active proteasomal subunits (beta1, beta2, beta5, beta1i, beta2i and beta5i). Applying a functional proteomics approach, we used a recently developed activity-based, cell-permeable proteasome-specific probe that for the first time allows differential visualization of individual active proteasomal subunits in intact primary cells. In primary leukemia samples, we observed remarkable variability in the amounts of active beta1/1i-, beta2/2i- and beta5/5i-type of subunits, contrasting with their constant protein expression. Bortezomib inhibited beta5- and beta1-type, but to a lesser extend beta2-type of subunits in live primary cells in vitro and in vivo. When we adapted the bortezomib-sensitive human acute myeloid leukemia cell line HL-60 to bortezomib 40 nM (HL-60a), proteasomal activity profiling revealed an upregulation of active subunits, and residual beta1/beta5-type of activity could be visualized in the presence of bortezomib 20 nM, in contrast to control cells. In a panel of cell lines from hematologic malignancies, the ratio between beta2-type and (beta1 + beta5)-type of active proteasomal polypeptides mirrored different degrees of bortezomib sensitivity. We thus conclude that the proteasomal activity profile varies in primary leukemia cells, and that the pattern of proteasomal subunit activity influences the sensitivity of hematologic malignancies toward bortezomib.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Borónicos/farmacología , Dominio Catalítico , Neoplasias Hematológicas/enzimología , Complejo de la Endopetidasa Proteasomal/análisis , Pirazinas/farmacología , Animales , Bortezomib , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Leucemia/tratamiento farmacológico , Leucemia/enzimología , Ratones , Inhibidores de Proteasas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA