Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 564(7734): 77-82, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30405243

RESUMEN

The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane ß-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.


Asunto(s)
Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/ultraestructura , Microscopía por Crioelectrón , Flavobacterium , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Flavobacterium/química , Flavobacterium/genética , Flavobacterium/metabolismo , Flavobacterium/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Transporte de Proteínas
2.
PLoS One ; 12(3): e0173395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257465

RESUMEN

The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct.


Asunto(s)
Bacterias/enzimología , Proteínas Portadoras/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Azufre/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cisteína/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Unión Proteica , Transducción de Señal , Tiosulfatos/química , Tiosulfatos/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(52): E7166-75, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26655737

RESUMEN

The bacterial Sox (sulfur oxidation) pathway is an important route for the oxidation of inorganic sulfur compounds. Intermediates in the Sox pathway are covalently attached to the heterodimeric carrier protein SoxYZ through conjugation to a cysteine on a protein swinging arm. We have investigated how the carrier protein shuttles intermediates between the enzymes of the Sox pathway using the interaction between SoxYZ and the enzyme SoxB as our model. The carrier protein and enzyme interact only weakly, but we have trapped their complex by using a "suicide enzyme" strategy in which an engineered cysteine in the SoxB active site forms a disulfide bond with the incoming carrier arm cysteine. The structure of this trapped complex, together with calorimetric data, identifies sites of protein-protein interaction both at the entrance to the enzyme active site tunnel and at a second, distal, site. We find that the enzyme distinguishes between the substrate and product forms of the carrier protein through differences in their interaction kinetics and deduce that this behavior arises from substrate-specific stabilization of a conformational change in the enzyme active site. Our analysis also suggests how the carrier arm-bound substrate group is able to outcompete the adjacent C-terminal carboxylate of the carrier arm for binding to the active site metal ions. We infer that similar principles underlie carrier protein interactions with other enzymes of the Sox pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Azufre/metabolismo , Tiosulfatos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Azufre/química , Termodinámica , Tiosulfatos/química
4.
J Biol Chem ; 290(14): 9209-21, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25673696

RESUMEN

Thiosulfate dehydrogenase (TsdA) catalyzes the oxidation of two thiosulfate molecules to form tetrathionate and is predicted to use an unusual cysteine-ligated heme as the catalytic cofactor. We have determined the structure of Allochromatium vinosum TsdA to a resolution of 1.3 Å. This structure confirms the active site heme ligation, identifies a thiosulfate binding site within the active site cavity, and reveals an electron transfer route from the catalytic heme, through a second heme group to the external electron acceptor. We provide multiple lines of evidence that the catalytic reaction proceeds through the intermediate formation of a S-thiosulfonate derivative of the heme cysteine ligand: the cysteine is reactive and is accessible to electrophilic attack; cysteine S-thiosulfonate is formed by the addition of thiosulfate or following the reverse reaction with tetrathionate; the S-thiosulfonate modification is removed through catalysis; and alkylating the cysteine blocks activity. Active site amino acid residues required for catalysis were identified by mutagenesis and are inferred to also play a role in stabilizing the S-thiosulfonate intermediate. The enzyme SoxAX, which catalyzes the first step in the bacterial Sox thiosulfate oxidation pathway, is homologous to TsdA and can be inferred to use a related catalytic mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Citocromos/metabolismo , Tiosulfatos/metabolismo , Secuencia de Aminoácidos , Bacterias/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Citocromos/química , Cartilla de ADN , Espectrometría de Masas , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
5.
Science ; 345(6201): 1170-1173, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25190793

RESUMEN

Alkaline phosphatases play a crucial role in phosphate acquisition by microorganisms. To expand our understanding of catalysis by this class of enzymes, we have determined the structure of the widely occurring microbial alkaline phosphatase PhoX. The enzyme contains a complex active-site cofactor comprising two antiferromagnetically coupled ferric iron ions (Fe(3+)), three calcium ions (Ca(2+)), and an oxo group bridging three of the metal ions. Notably, the main part of the cofactor resembles synthetic oxide-centered triangular metal complexes. Structures of PhoX-ligand complexes reveal how the active-site metal ions bind substrate and implicate the cofactor oxo group in the catalytic mechanism. The presence of iron in PhoX raises the possibility that iron bioavailability limits microbial phosphate acquisition.


Asunto(s)
Fosfatasa Alcalina/química , Proteínas Bacterianas/química , Calcio/química , Coenzimas/química , Hierro/química , Fosfatos/metabolismo , Fosfatasa Alcalina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Ligandos , Estructura Secundaria de Proteína , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
J Biol Chem ; 289(45): 30889-99, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25217636

RESUMEN

The PhoD family of extra-cytoplasmic phosphodiesterases are among the most commonly occurring bacterial phosphatases. The exemplars for this family are the PhoD protein of Bacillus subtilis and the phospholipase D of Streptomyces chromofuscus. We present the crystal structure of B. subtilis PhoD. PhoD is most closely related to purple acid phosphatases (PAPs) with both types of enzyme containing a tyrosinate-ligated Fe(3+) ion. However, the PhoD active site diverges from that found in PAPs and uses two Ca(2+) ions instead of the single extra Fe(2+), Mn(2+), or Zn(2+) ion present in PAPs. The PhoD crystals contain a phosphate molecule that coordinates all three active site metal ions and that is proposed to represent a product complex. A C-terminal helix lies over the active site and controls access to the catalytic center. The structure of PhoD defines a new phosphatase active site architecture based on Fe(3+) and Ca(2+) ions.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Calcio/química , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Hierro/química , Ligandos , Metales/química , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Tirosina/química , Zinc/química
7.
J Biol Chem ; 287(48): 40350-9, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23060437

RESUMEN

BACKGROUND: SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS: Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION: An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE: Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.


Asunto(s)
Proteínas Bacterianas/química , Grupo Citocromo c/química , Hemo/metabolismo , Oxidorreductasas/química , Rhodovulum/enzimología , Azufre/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Cinética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Rhodovulum/química , Rhodovulum/genética
8.
J Biol Chem ; 284(32): 21707-18, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19535341

RESUMEN

SoxB is an essential component of the bacterial Sox sulfur oxidation pathway. SoxB contains a di-manganese(II) site and is proposed to catalyze the release of sulfate from a protein-bound cysteine S-thiosulfonate. A direct assay for SoxB activity is described. The structure of recombinant Thermus thermophilus SoxB was determined by x-ray crystallography to a resolution of 1.5 A. Structures were also determined for SoxB in complex with the substrate analogue thiosulfate and in complex with the product sulfate. A mechanistic model for SoxB is proposed based on these structures.


Asunto(s)
Factores de Transcripción SOXB1/metabolismo , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citoplasma/metabolismo , Regulación de la Expresión Génica , Hidrólisis , Modelos Químicos , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Azufre/química
9.
J Biol Chem ; 282(33): 23937-45, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17565984

RESUMEN

The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.


Asunto(s)
Cisteína , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutagénesis , Transporte Biológico , Disulfuros , Estructura Cuaternaria de Proteína
10.
J Bacteriol ; 189(15): 5482-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17545291

RESUMEN

The TatC protein is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. It is a polytopic membrane protein that forms a complex with TatB, together acting as the receptor for Tat substrates. In this study we have constructed 57 individual cysteine substitutions throughout the protein. Each of the substitutions resulted in a TatC protein that was competent to support Tat-dependent protein translocation. Accessibility studies with membrane-permeant and -impermeant thiol-reactive reagents demonstrated that TatC has six transmembrane helices, rather than the four suggested by a previous study (K. Gouffi, C.-L. Santini, and L.-F. Wu, FEBS Lett. 525:65-70, 2002). Disulfide cross-linking experiments with TatC proteins containing single cysteine residues showed that each transmembrane domain of TatC was able to interact with the same domain from a neighboring TatC protein. Surprisingly, only three of these cysteine variants retained the ability to cross-link at low temperatures. These results are consistent with the likelihood that most of the disulfide cross-links are between TatC proteins in separate TatBC complexes, suggesting that TatC is located on the periphery of the complex.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Temperatura
11.
J Biol Chem ; 282(32): 23194-204, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17522046

RESUMEN

The bacterial Sox (sulfur oxidizing) system allows the utilization of inorganic sulfur compounds in energy metabolism. Central to this process is the SoxYZ complex that carries the pathway intermediates on a cysteine residue near the C terminus of SoxY. Crystal structures have been determined for Paracoccus pantotrophus SoxYZ with the carrier cysteine in the underivatized state, conjugated to the polysulfide mimic beta-mercaptoethanol, and as the sulfonate adduct pathway intermediate. The carrier cysteine is located on a peptide swinging arm and is bracketed on either side by diglycine dipeptides acting as molecular universal joints. This structure provides a novel solution to the requirement that the cysteine-bound intermediates be able to access and orient themselves within the active sites of multiple partner enzymes. Adjacent to the swinging arm there is a conserved, deep, apolar pocket into which the beta-mercaptoethanol adduct extends. This pocket would be well suited to a role in protecting labile pathway intermediates from adventitious reactions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , Paracoccus pantotrophus/metabolismo , Azufre/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Cisteína/química , Mercaptoetanol/química , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Plásmidos/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Ácidos Sulfónicos/química
12.
J Biol Chem ; 281(45): 34072-85, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16973610

RESUMEN

The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.


Asunto(s)
Arginina/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Simulación por Computador , Cisteína/química , Cisteína/genética , Disulfuros/química , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de Unión Periplasmáticas/genética , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
EMBO J ; 21(21): 5599-610, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12411478

RESUMEN

Reduced inorganic sulfur compounds are utilized by many bacteria as electron donors to photosynthetic or respiratory electron transport chains. This metabolism is a key component of the biogeochemical sulfur cycle. The SoxAX protein is a heterodimeric c-type cytochrome involved in thiosulfate oxidation. The crystal structures of SoxAX from the photosynthetic bacterium Rhodovulum sulfidophilum have been solved at 1.75 A resolution in the oxidized state and at 1.5 A resolution in the dithionite-reduced state, providing the first structural insights into the enzymatic oxidation of thiosulfate. The SoxAX active site contains a haem with unprecedented cysteine persulfide (cysteine sulfane) coordination. This unusual post-translational modification is also seen in sulfurtransferases such as rhodanese. Intriguingly, this enzyme shares further active site characteristics with SoxAX such as an adjacent conserved arginine residue and a strongly positive electrostatic potential. These similarities have allowed us to suggest a catalytic mechanism for enzymatic thiosulfate oxidation. The atomic coordinates and experimental structure factors have been deposited in the PDB with the accession codes 1H31, 1H32 and 1H33.


Asunto(s)
Proteínas Bacterianas , Grupo Citocromo c/metabolismo , Tiosulfatos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Grupo Citocromo c/química , Hemo/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteobacteria/enzimología , Homología de Secuencia de Aminoácido , Tiosulfatos/química
14.
Biochemistry ; 41(46): 13690-7, 2002 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-12427031

RESUMEN

Proteins bearing a signal peptide with a consensus twin-arginine motif are translocated via the Tat pathway, a multiprotein system consisting minimally of the integral inner membrane proteins TatA, TatB, and TatC. On a molar basis, TatA is the major pathway component. Here we show that TatA can be purified independently of the other Tat proteins as a 460 kDa homooligomeric complex. Homooligomer formation requires the amino-terminal membrane-anchoring domain of TatA. According to circular dichroism spectroscopy, approximately half of the TatA polypeptide forms alpha-helical secondary structure in both detergent solution and proteoliposomes. An expressed construct without the transmembrane segment is largely unstructured in aqueous solution but is able to insert into phospholipid monolayers and interacts with membrane bilayers. Protease accessibility experiments indicate that the extramembranous region of TatA is located at the cytoplasmic face of the cell membrane.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Subunidades de Proteína/metabolismo , Dicroismo Circular , Dimerización , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Proteolípidos/química
15.
Microbiology (Reading) ; 148(Pt 11): 3631-3638, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12427953

RESUMEN

The tetrathionate (Ttr) and thiosulfate (Phs) reductases of Salmonella enterica LT2, together with the polysulfide reductase (Psr) of Wolinella succinogenes, are unusual examples of enzymes containing a molybdopterin active-site cofactor since all formally catalyse sulfur-sulfur bond cleavage. This is in contrast to the oxygen or hydrogen transfer reactions exhibited by other molybdopterin enzymes. Here the catalytic specificity of Ttr and Phs has been compared using both physiological and synthetic electron-donor systems. Ttr is shown to catalyse reduction of trithionate but not sulfur or thiosulfate. In contrast, Phs cannot reduce tetrathionate or trithionate but allows whole cells to utilize elemental sulfur as an electron acceptor. Mechanisms are proposed by which the bacterium is able to utilize an insoluble sulfur substrate by means of reactions at the cytoplasmic rather than the outer membrane.


Asunto(s)
Salmonella enterica/metabolismo , Compuestos de Azufre/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cisteína/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Respiración , Salmonella enterica/enzimología , Homología de Secuencia de Aminoácido , Azufre/metabolismo , Ácidos Sulfurados/metabolismo , Sulfurtransferasas
16.
Mol Microbiol ; 43(4): 1005-21, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11929547

RESUMEN

The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Formate dehydrogenase-N is a three-subunit membrane-bound enzyme, in which localization of the FdnG subunit to the membrane is Tat dependent. FdnG was found in the periplasmic fraction of a mutant lacking the membrane anchor subunit FdnI, confirming that FdnG is located at the periplasmic face of the cytoplasmic membrane. However, the phenotypes of gene fusions between fdnG and the subcellular reporter genes phoA (encoding alkaline phosphatase) or lacZ (encoding beta-galactosidase) were the opposite of those expected for analogous fusions targeted to the Sec translocase. PhoA fusion experiments have previously been used to argue that the peripheral membrane DmsAB subunits of the Tat-dependent enzyme dimethyl sulphoxide reductase are located at the cytoplasmic face of the inner membrane. Biochemical data are presented that instead show DmsAB to be at the periplasmic side of the membrane. The behaviour of reporter proteins targeted to the Tat system was analysed in more detail. These data suggest that the Tat and Sec pathways differ in their ability to transport heterologous passenger proteins. They also suggest that caution should be observed when using subcellular reporter fusions to determine the topological organization of Tat-dependent membrane protein complexes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Formiato Deshidrogenasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Fusión Artificial Génica , Proteínas Bacterianas/genética , Transporte Biológico , Biomarcadores , Membrana Celular/metabolismo , Cloranfenicol O-Acetiltransferasa/genética , Cloranfenicol O-Acetiltransferasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formiato Deshidrogenasas/genética , Formiatos/metabolismo , Genes Reporteros , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Péptidos , Periplasma/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA