Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(39): 9773-9778, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30194232

RESUMEN

The anti-CD20 antibody ocrelizumab, approved for treatment of multiple sclerosis, leads to rapid elimination of B cells from the blood. The extent of B cell depletion and kinetics of their recovery in different immune compartments is largely unknown. Here, we studied how anti-CD20 treatment influences B cells in bone marrow, blood, lymph nodes, and spleen in models of experimental autoimmune encephalomyelitis (EAE). Anti-CD20 reduced mature B cells in all compartments examined, although a subpopulation of antigen-experienced B cells persisted in splenic follicles. Upon treatment cessation, CD20+ B cells simultaneously repopulated in bone marrow and spleen before their reappearance in blood. In EAE induced by native myelin oligodendrocyte glycoprotein (MOG), a model in which B cells are activated, B cell recovery was characterized by expansion of mature, differentiated cells containing a high frequency of myelin-reactive B cells with restricted B cell receptor gene diversity. Those B cells served as efficient antigen-presenting cells (APCs) for activation of myelin-specific T cells. In MOG peptide-induced EAE, a purely T cell-mediated model that does not require B cells, in contrast, reconstituting B cells exhibited a naive phenotype without efficient APC capacity. Our results demonstrate that distinct subpopulations of B cells differ in their sensitivity to anti-CD20 treatment and suggest that differentiated B cells persisting in secondary lymphoid organs contribute to the recovering B cell pool.


Asunto(s)
Antígenos CD20/inmunología , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/inmunología , Bazo/citología , Bazo/inmunología
2.
J Neuroinflammation ; 12: 112, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26036872

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice. METHODS: Using flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals. RESULTS: In vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed. CONCLUSION: The therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS.


Asunto(s)
Amnios/citología , Amnios/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Células Epiteliales/citología , Células Epiteliales/inmunología , Terapia de Inmunosupresión/métodos , Amnios/trasplante , Animales , Proliferación Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Células Epiteliales/trasplante , Femenino , Humanos , Técnicas In Vitro , Tejido Linfoide/patología , Ratones , Ratones Endogámicos NOD , Fenotipo , Linfocitos T/patología , Linfocitos T Reguladores/patología
3.
Biol Chem ; 396(8): 923-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25719317

RESUMEN

Induced pluripotent stem cell (iPSC)-derived neurospheres, which consist mainly of neural progenitors, are considered to be a good source of neural cells for transplantation in regenerative medicine. In this study, we have used lithium chloride, which is known to be a neuroprotective agent, in an iPSC-derived neurosphere model, and examined both the formation rate and size of the neurospheres as well as the proliferative and apoptotic status of their contents. Our results showed that lithium enhanced the formation and the sizes of the iPSC-derived neurospheres, increased the number of Ki67-positive proliferating cells, but reduced the number of the TUNEL-positive apoptotic cells. This increased number of Ki67 proliferating cells was secondary to the decreased apoptosis and not to the stimulation of cell cycle entry, as the expression of the proliferation marker cyclin D1 mRNA did not change after lithium treatment. Altogether, we suggest that lithium enhances the survival of neural progenitors and thus the quality of the iPSC-derived neurospheres, which may strengthen the prospect of using lithium-treated pluripotent cells and their derivatives in a clinical setting.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Cloruro de Litio/farmacología , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Cultivadas , Ciclina D1/genética , Humanos , Etiquetado Corte-Fin in Situ , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética
4.
N Biotechnol ; 32(1): 212-28, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815224

RESUMEN

The advent of human induced pluripotent stem cells (hiPSCs), reprogrammed in vitro from both healthy and disease-state human somatic cells, has triggered an enormous global research effort to realize personalized regenerative medicine for numerous degenerative conditions. hiPSCs have been generated from cells of many tissue types and can be differentiated in vitro to most somatic lineages, not only for the establishment of disease models that can be utilized as novel drug screening platforms and to study the molecular and cellular processes leading to degeneration, but also for the in vivo cell-based repair or modulation of a patient's disease profile. hiPSCs derived from patients with the neurodegenerative diseases amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease and multiple sclerosis have been successfully differentiated in vitro into disease-relevant cell types, including motor neurons, dopaminergic neurons and oligodendrocytes. However, the generation of functional iPSC-derived neural cells that are capable of engraftment in humans and the identification of robust disease phenotypes for modeling neurodegeneration still require several key challenges to be addressed. Here, we discuss these challenges and summarize recent progress toward the application of iPSC technology for these four common neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Enfermedades Neurodegenerativas/terapia , Trasplante de Células Madre , Diferenciación Celular , Humanos , Enfermedades Neurodegenerativas/patología
5.
J Proteome Res ; 13(8): 3655-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24933266

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a murine model of multiple sclerosis, a chronic neurodegenerative and inflammatory autoimmune condition of the central nervous system (CNS). Pathology is driven by the infiltration of autoreactive CD4(+) lymphocytes into the CNS, where they attack neuronal sheaths causing ascending paralysis. We used an isotope-coded protein labeling approach to investigate the proteome of CD4(+) cells isolated from the spinal cord and brain of mice at various stages of EAE progression in two EAE disease models: PLP139-151-induced relapsing-remitting EAE and MOG35-55-induced chronic EAE, which emulate the two forms of human multiple sclerosis. A total of 1120 proteins were quantified across disease onset, peak-disease, and remission phases of disease, and of these 13 up-regulated proteins of interest were identified with functions relating to the regulation of inflammation, leukocyte adhesion and migration, tissue repair, and the regulation of transcription/translation. Proteins implicated in processes such as inflammation (S100A4 and S100A9) and tissue repair (annexin A1), which represent key events during EAE progression, were validated by quantitative PCR. This is the first targeted analysis of autoreactive cells purified from the CNS during EAE, highlighting fundamental CD4(+) cell-driven processes that occur during the initiation of relapse and remission stages of disease.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Sistema Nervioso Central/citología , Encefalomielitis Autoinmune Experimental/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Adhesión Celular/genética , Movimiento Celular/genética , Sistema Nervioso Central/metabolismo , Cromatografía Líquida de Alta Presión , Femenino , Citometría de Flujo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Toxina del Pertussis , Proteoma/genética
6.
J Exp Med ; 210(13): 2921-37, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24323356

RESUMEN

Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B-MHC II(-/-)), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)-specific B cell receptor (BCR; IgH(MOG-mem)) but cannot secrete antibodies. B-MHC II(-/-) mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell- and B cell-dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B-MHC II(-/-) mice. In the absence of antibodies, IgH(MOG-mem) mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle-like structures were observed in IgH(MOG-mem) mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell-targeted therapies.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Sistema Nervioso Central/inmunología , Genes MHC Clase II , Vaina de Mielina/inmunología , Animales , Proliferación Celular , Separación Celular , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Citometría de Flujo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Inmunoglobulinas/inmunología , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células TH1/inmunología , Células Th17/inmunología
7.
Brain Behav Immun ; 30: 103-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23369732

RESUMEN

Interleukin (IL)-10 is an important immunoregulatory cytokine shown to impact inflammatory processes as manifested in patients with multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Several lines of evidence indicate that the effectiveness of IL-10-based therapies may be dependent on the timing and mode of delivery. In the present study we engineered the expression of IL-10 in human adipose-derived mesenchymal stem cells (Adi-IL-10-MSCs) and transplanted these cells early in the disease course to mice with EAE. Adi-IL-10-MSCs transplanted via the intraperitoneal route prevented or delayed the development of EAE. This protective effect was associated with several anti-inflammatory response mechanisms, including a reduction in peripheral T-cell proliferative responses, a decrease in pro-inflammatory cytokine secretion as well as a preferential inhibition of Th17-mediated neuroinflammation. In vitro analyses revealed that Adi-IL-10-MSCs inhibited the phenotypic maturation, cytokine production and antigen presenting capacity of bone marrow-derived myeloid dendritic cells, suggesting that the mechanism of action may involve an indirect effect on pathogenic T-cells via the modulation of antigen presenting cell function. Collectively, these results suggest that early intervention with gene modified Adi-MSCs may be beneficial for the treatment of autoimmune diseases such as MS.


Asunto(s)
Adipocitos/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Interleucina-10/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adipocitos/trasplante , Animales , Autoinmunidad/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Linfocitos T/inmunología
8.
Cell Transplant ; 22(8): 1409-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23057962

RESUMEN

Mesenchymal stem cells (MSCs) are efficacious in a variety of intractable diseases. While bone marrow (BM)-derived MSCs (BM-MSCs) have been widely investigated, MSCs from other tissue sources have also been shown to be effective in several autoimmune and inflammatory disorders. In the present study, we simultaneously assessed the therapeutic efficacy of human BM-MSCs, as well as MSCs isolated from adipose tissue (Ad-MSCs) and umbilical cord Wharton's jelly (UC-MSCs), in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Prior to in vivo experiments, we characterized the phenotype and function of all three MSC types. We show that BM-MSCs were more efficient at suppressing the in vitro proliferation of mitogen or antigen-stimulated T-cell responses compared to Ad-MSCs and UC-MSCs. Notably BM-MSCs induced the differential expression of cytokines from normal and stimulated T-cells. Paradoxically, intravenous transplantation of BM-MSCs into C57Bl/6 mice with chronic progressive EAE had a negligible effect on the disease course, even when multiple MSC injections were administered over a number of time points. In contrast, Ad-MSCs had the most significant impact on clinical and pathological disease outcomes in chronic progressive and relapsing-remitting EAE models. In vivo tracking studies revealed that Ad-MSCs were able to migrate to the central nervous system (CNS), a property that most likely correlated with their broader expression of homing molecules, while BM-MSCs were not detected in this anatomic region. Collectively, this comparative investigation demonstrates that transplanted Ad-MSCs play a significant role in tissue repair processes by virtue of their ability to suppress inflammation coupled with their enhanced ability to home to the injured CNS. Given the access and relatively ease for harvesting adipose tissue, these data further implicate Ad-MSCs as a cell therapeutic that may be used to treat MS patients.


Asunto(s)
Movimiento Celular , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Animales , Autoantígenos/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enfermedad Crónica , Citocinas/biosíntesis , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Interferón gamma/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Esclerosis Múltiple Recurrente-Remitente/terapia , Especificidad de Órganos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Solubilidad , Bazo/citología , Bazo/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Resultado del Tratamiento , Cordón Umbilical/citología
9.
Cell Adh Migr ; 6(3): 179-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22568986

RESUMEN

Mesenchymal stem/stromal cells (MSCs) can be isolated from most adult tissues and hold considerable promise for tissue regenerative therapies. Some of the potential advantages that MSCs have over other adult stem cell types include: (1) their relative ease of isolation, culture and expansion; (2) their immunomodulatory properties; (3) they can provide trophic support to injured tissues; (4) they can be transduced by retroviral vectors at a high efficiency; (5) they have an ability to home to sites of inflammation and injury. Collectively these characteristics suggest that MSCs are attractive vehicles for cell and gene therapy applications. In the current study, we investigated whether transplantation of human adipose-derived MSCs (Ad-MSCs) engineered to overexpress the anti-inflammatory cytokine interleukin (IL)-4 was efficacious in experimental autoimmune encephalomyelitis (EAE). Ad-MSCs transduced with a bicistronic lentiviral vector encoding mouse IL-4 and enhanced green fluorescent protein (Ad-IL4-MSCs) stably expressed, relatively high levels of both transgenes. Importantly the phenotypic and functional attributes of Ad-IL4-MSCs, such as the expression of homing molecules and differentiation capacity, was not altered by the transduction process. Notably, the early administration of Ad-IL4-MSCs in mice with EAE at the time of T-cell priming attenuated clinical disease. This protective effect was associated with a reduction in peripheral MOG-specific T-cell responses and a shift from a pro- to an anti-inflammatory cytokine response. These data suggest that the delivery of Ad-MSCs genetically engineered to express anti-inflammatory cytokines may provide a rational approach to promote immunomodulation and tissue protection in a number of inflammatory and degenerative diseases including multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Interleucina-4/biosíntesis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Células Cultivadas , Intervención Médica Temprana , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Células Th2/inmunología , Células Th2/metabolismo
10.
Brain ; 135(Pt 6): 1794-818, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22544872

RESUMEN

Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoimmune encephalomyelitis; however, the mechanism by which this occurs is unclear. We now show that the collapsin response mediator protein 2 (CRMP-2), an important tubulin-associated protein that regulates axonal growth, is phosphorylated and hence inhibited during the progression of experimental autoimmune encephalomyelitis in degenerating axons. The phosphorylated form of CRMP-2 (pThr555CRMP-2) is localized to spinal cord neurons and axons in chronic-active multiple sclerosis lesions. Specifically, pThr555CRMP-2 is implicated to be Nogo-66 receptor 1 (NgR1)-dependent, since myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced NgR1 knock-out (ngr1(-)(/)(-)) mice display a reduced experimental autoimmune encephalomyelitis disease progression, without a deregulation of ngr1(-)(/)(-) MOG(35-55)-reactive lymphocytes and monocytes. The limitation of axonal degeneration/loss in experimental autoimmune encephalomyelitis-induced ngr1(-)(/)(-) mice is associated with lower levels of pThr555CRMP-2 in the spinal cord and optic nerve during experimental autoimmune encephalomyelitis. Furthermore, transduction of retinal ganglion cells with an adeno-associated viral vector encoding a site-specific mutant T555ACRMP-2 construct, limits optic nerve axonal degeneration occurring at peak stage of experimental autoimmune encephalomyelitis. Therapeutic administration of the anti-Nogo(623-640) antibody during the course of experimental autoimmune encephalomyelitis, associated with an improved clinical outcome, is demonstrated to abrogate the protein levels of pThr555CRMP-2 in the spinal cord and improve pathological outcome. We conclude that phosphorylation of CRMP-2 may be downstream of NgR1 activation and play a role in axonal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Blockade of Nogo-A/NgR1 interaction may serve as a viable therapeutic target in multiple sclerosis.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esclerosis Múltiple/patología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adulto , Análisis de Varianza , Animales , Anticuerpos/uso terapéutico , Axones/patología , Axones/ultraestructura , Complejo CD3/metabolismo , Línea Celular Tumoral , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica/genética , Glicoproteínas/efectos adversos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Mutación/genética , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Proteínas de Neurofilamentos/metabolismo , Receptor Nogo 1 , Nervio Óptico/metabolismo , Nervio Óptico/patología , Fragmentos de Péptidos/efectos adversos , Fosforilación , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/inmunología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
11.
PLoS One ; 7(4): e35093, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22514711

RESUMEN

BACKGROUND: Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). METHODOLOGY/PRINCIPAL FINDINGS: The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. CONCLUSION/SIGNIFICANCE: Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.


Asunto(s)
Esclerosis Múltiple/terapia , Células-Madre Neurales/citología , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/terapia , Ratones , Proteínas de la Mielina/toxicidad , Glicoproteína Mielina-Oligodendrócito , Células-Madre Neurales/trasplante
12.
Stem Cell Res ; 8(2): 259-73, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22265745

RESUMEN

The recent introduction of technologies capable of reprogramming human somatic cells into induced pluripotent stem (iPS) cells offers a unique opportunity to study many aspects of neurodegenerative diseases in vitro that could ultimately lead to novel drug development and testing. Here, we report for the first time that human dermal fibroblasts from a patient with relapsing-remitting Multiple Sclerosis (MS) were reprogrammed to pluripotency by retroviral transduction using defined factors (OCT4, SOX2, KLF4, and c-MYC). The MSiPS cell lines resembled human embryonic stem (hES) cell-like colonies in morphology and gene expression and exhibited silencing of the retroviral transgenes after four passages. MSiPS cells formed embryoid bodies that expressed markers of all three germ layers by immunostaining and Reverse Transcriptase (RT)-PCR. The injection of undifferentiated iPS cell colonies into immunodeficient mice formed teratomas, thereby demonstrating pluripotency. The MSiPS cells were successfully differentiated into mature astrocytes, oligodendrocytes and neurons with normal karyotypes. Although MSiPS-derived neurons displayed some differences in their electrophysiological characteristics as compared to the control cell line, they exhibit properties of functional neurons, with robust resting membrane potentials, large fast tetrodotoxin-sensitive action potentials and voltage-gated sodium currents. This study provides for the first time proof of concept that disease cell lines derived from skin cells obtained from an MS patient can be generated and successfully differentiated into mature neural lineages. This represents an important step in a novel approach for the study of MS pathophysiology and potential drug discovery.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Neuronas/patología , Animales , Linaje de la Célula , Fenómenos Electrofisiológicos , Fibroblastos/patología , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones SCID , Repeticiones de Microsatélite/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Oligodendroglía/patología , Células Madre Pluripotentes/patología , Regiones Promotoras Genéticas/genética , Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/patología , Transducción Genética
13.
Neuroimage ; 59(4): 3624-40, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22119649

RESUMEN

In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Humanos
14.
Cell Adh Migr ; 5(5): 373-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21975545

RESUMEN

Bone marrow has been proposed as a possible source of cells capable of replacing injured neural cells in diseases such as Multiple Sclerosis (MS). Previous studies have reported conflicting results regarding the transformation of bone marrow cells into neural cells in vivo. This study is a detailed analysis of the fate of bone marrow derived cells (BMDC) in the CNS of C57Bl/6 mice with and without experimental autoimmune encephalomyelitis using flow cytometry to identify GFP-labeled BMDC that lacked the pan-hematopoietic marker, CD45 and co-expressed neural markers polysialic acid-neural cell adhesion molecule or A2B5. A small number of BMDC displaying neural markers and lacking CD45 expression was identified within both the non-inflamed and inflamed CNS. However, the majority of BMDC exhibited a hematopoietic phenotype.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/patología , Gangliósidos/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Animales , Biomarcadores/metabolismo , Médula Ósea/metabolismo , Trasplante de Médula Ósea , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fenotipo
15.
J Med Chem ; 54(6): 1667-81, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21341682

RESUMEN

Through the application of TRAP (target-related affinity profiling), we identified a novel class of heteroaroylphenylureas that inhibit human CCL2-induced chemotaxis of monocytes/macrophages both in vitro and in vivo. This inhibition was concentration-dependent and selective with regard to other chemokines. The compounds, however, did not antagonize the binding of (125)I-labeled CCL2 to the CCR2 receptor nor did they block CCR2-mediated signal transduction responses such as calcium mobilization. Optimization of early leads for potency and pharmacokinetic parameters resulted in the identification of 17, a potent inhibitor of chemotaxis (IC(50) = 80 nM) with excellent oral bioavailability in rats (F = 60%). Compound 17 reduced swelling and joint destruction in two rat models of rheumatoid arthritis and delayed disease onset and produced near complete resolution of symptoms in a mouse model of multiple sclerosis.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Quimiocina CCL2/antagonistas & inhibidores , Compuestos de Fenilurea/síntesis química , Administración Oral , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Disponibilidad Biológica , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células CHO , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Cricetinae , Cricetulus , Humanos , Articulaciones/efectos de los fármacos , Articulaciones/patología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Ratones Endogámicos ICR , Monocitos/efectos de los fármacos , Monocitos/fisiología , Esclerosis Múltiple/tratamiento farmacológico , Compuestos de Fenilurea/farmacocinética , Compuestos de Fenilurea/farmacología , Ensayo de Unión Radioligante , Ratas , Receptores CCR2/metabolismo , Relación Estructura-Actividad
16.
J Neurosci Res ; 89(5): 639-49, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21344476

RESUMEN

Demyelination coincides with numerous changes of gene expression in the central nervous system (CNS). Cystatin F, which is a papain-like lysosomal cysteine proteinase inhibitor that is normally expressed by immune cells and not in the brain, is massively induced in the CNS during acute demyelination. We found that microglia, which are monocyte/macrophage-lineage cells in the CNS, express cystatin F only during demyelination. By using several demyelinating animal models and the spinal cord tissues from multiple sclerosis (MS) patients, we examined spatiotemporal expression pattern of cystatin F by in situ hybridization and immunohistochemistry. We found that the timing of cystatin F induction matches with ongoing demyelination, and the places with cystatin F expression overlapped with the remyelinating area. Most interestingly, cystatin F induction ceased in chronic demyelination, in which remyelinating ability was lost. These findings demonstrate that the expression of cystatin F indicates the occurrence of ongoing demyelination/remyelination and the absence of cystatin F expression indicates the cessation of remyelination in the demyelinating area.


Asunto(s)
Cistatinas/biosíntesis , Enfermedades Autoinmunes Desmielinizantes SNC/metabolismo , Microglía/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Animales , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/metabolismo , Células Cultivadas , Enfermedad Crónica , Cistatinas/deficiencia , Cistatinas/metabolismo , Enfermedades Autoinmunes Desmielinizantes SNC/genética , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Microglía/patología , Fibras Nerviosas Mielínicas/patología , Regeneración Nerviosa/genética , Recuperación de la Función/genética
17.
Curr Stem Cell Res Ther ; 6(1): 50-62, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20955155

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is characterised by an autoimmune attack on components of the myelin sheath and axons leading to neurological disability. Although long-approved current treatments for MS have so far only targeted immune components of the disease in a non-specific manner, the efficacy of these immunomodulatory treatments are limited given that they are only immunosuppressive and/ or immunoregulatory and do not prevent long-term disease progression. As such, there is a clear need for more effective therapies that are capable of targeting other aspects of the disease including neurodegeneration, demyelination and the underlying causes of the autoimmune state. Emerging data suggest that hematopoietic, mesenchymal and neural stem cells have the promise to restore self-tolerance, to provide in situ immunomodulation and neuroprotection as well as to promote regeneration. This review will summarise burgeoning experimental and clinical evidence supporting the application of these stem cell populations for the treatment of MS.


Asunto(s)
Esclerosis Múltiple/terapia , Trasplante de Células Madre , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Humanos , Inmunomodulación , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Regeneración Nerviosa , Células Madre/inmunología
18.
Stem Cell Rev Rep ; 6(4): 500-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20665128

RESUMEN

Multiple sclerosis is a neurodegenerative disease of the central nervous system that is characterized by inflammation, demyelination with associated accumulation of myelin debris, oligodendrocyte and axonal loss. Current therapeutic interventions for multiple sclerosis predominantly modulate the immune system and reduce the inflammatory insult by general, non-specific mechanisms but have little effect on the neurodegenerative component of the disease. Predictably, the overall long-term impact of treatment is limited since the neurodegenerative component of the disease, which can be the dominant process in some patients, determines permanent disability. Mesenchymal stem cells, which are endowed with potent immune regulatory and neuroprotective properties, have recently emerged as promising cellular vehicles for the treatment of MS. Preclinical evaluation in experimental models of MS have shown that MSCs are efficacious in suppressing clinical disease. Mechanisms that may underlie these effects predominantly involve the secretion of immunomodulatory and neurotrophic growth factors, which collectively act to limit CNS inflammation, stimulate neurogenesis, protect axons and promote remyelination. As a logical progression to clinical utility, the safety of these cells have been initially assessed in hematological, cardiac and inflammatory diseases. Importantly, transplantation with autologous or allogeneic MSCs has been well tolerated by patients with few significant adverse effects. On the basis of these results, new, multicentre clinical trials have been launched to assess the safety and efficacy of MSCs for inflammatory MS. It thus comes as no surprise that the coalescence of an international group of experts have convened to generate a consensus guide for the transplantation of autologous bone marrow-derived MSC which, in time, may set the foundation for the next generation of therapies for the treatment of MS patients.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Esclerosis Múltiple/terapia , Inmunidad Adaptativa/inmunología , Animales , Ensayos Clínicos como Asunto , Humanos , Inmunidad Innata/inmunología , Esclerosis Múltiple/metabolismo
19.
Neuroimage ; 49(2): 1180-9, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19796690

RESUMEN

Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Despite progress in understanding immunogenetic aspects of this disease, the mechanisms involved in lesion formation are unknown. To gain new insights into the neuropathology of MS, we used an innovative integration of Fourier transform infrared (FT-IR) microspectroscopy, bioinformatics, and a synchrotron light source to analyze macromolecular changes in the CNS during the course and prevention of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We report that subtle chemical and structural changes not observed by conventional histology were detected before the onset of clinical signs of EAE. Moreover, trained artificial neural networks (ANNs) could discriminate, with excellent sensitivity and specificity, pathology from surrounding tissues and the early stage of the disease progression. Notably, we show that this novel measurement platform can detect characteristic differences in biochemical composition of lesion pathology in animals partially protected against EAE by vaccination with Nogo-A, an inhibitor of neural outgrowth, demonstrating the potential for automated screening and evaluation of new therapeutic agents.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Animales , Automatización , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Proteínas de la Mielina/inmunología , Proteínas de la Mielina/uso terapéutico , Redes Neurales de la Computación , Proteínas Nogo , Péptidos/inmunología , Péptidos/uso terapéutico , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Factores de Tiempo , Vacunación
20.
J Immunol ; 181(11): 7571-80, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19017946

RESUMEN

Autoimmune diseases are incurable. We have hypothesized that these diseases can be cured by the transplantation of bone marrow (BM) stem cells that have been genetically engineered to express self-Ag. Here we have tested this hypothesis in experimental autoimmune encephalomyelitis (EAE) induced by the self-Ag myelin oligodendrocyte glycoprotein (MOG). We show that, in mice, transplantation of BM genetically modified to express MOG prevented the induction and progression of EAE, and combined with antecedent corticosteroid treatment, induced long-term remission of established disease. Mice remained resistant to EAE development upon subsequent rechallenge with MOG. Transfer of BM from these mice rendered recipients resistant to EAE. Splenocytes from these mice failed to proliferate or produce IL-17, IFN-gamma, and GM-CSF in response to MOG(35-55) peptide stimulation and they failed to produce MOG autoantibody. Mechanistically, we demonstrated in vivo reduction in development of CD4(+) MOG(35-55)-specific thymocytes, indicative of clonal deletion with no evidence for selection of Ag-specific regulatory T cells. These findings validate our hypothesis that transplantation of genetically modified BM expressing disease-causative self-Ag provides a curative approach by clonal deletion of disease-causative self-reactive T cells.


Asunto(s)
Autoantígenos/inmunología , Trasplante de Médula Ósea , Supresión Clonal/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Glicoproteínas/inmunología , Tolerancia Inmunológica/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T Reguladores/inmunología , Corticoesteroides/farmacología , Animales , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Autoantígenos/genética , Supresión Clonal/efectos de los fármacos , Supresión Clonal/genética , Citocinas/genética , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Expresión Génica/genética , Expresión Génica/inmunología , Glicoproteínas/genética , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/genética , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Ratones , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos/genética , Timo/inmunología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA