Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Cancer Cell ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38788721

RESUMEN

Most targeted cancer drugs inhibit the oncogenic signals to which cancer cells are addicted. We discuss here a counterintuitive approach to cancer therapy, which consists of deliberate overactivation of the oncogenic signals to overload the stress responses of cancer cells. We discuss why such overactivation of oncogenic signaling, combined with perturbation of the stress response pathways, can be potentially effective in killing cancer cells, aiming to inspire further discussion and consideration.

2.
Clin Cancer Res ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739109

RESUMEN

PURPOSE: Development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600 mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of the resistant tumor cells. We aimed to assess the anti-tumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600 melanoma who progressed after initial response to BRAFi/MEKi. PATIENTS AND METHODS: Patients with BRAFi/MEKi resistant BRAFV600 melanoma were treated with vorinostat 360 mg QD for 14 days followed by BRAFi/MEKi. The primary endpoint was an objective response rate of progressive lesions of at least 30% according to RECIST 1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), safety, pharmacokinetics of vorinostat and translational molecular analyses using ctDNA and tumor biopsies. RESULTS: Twenty-six patients with progressive BRAFi/MEKi resistant BRAFV600 mutated melanoma received treatment with vorinostat. Twenty-two patients were evaluable for response. The ORR was 9% (one complete response for 31.2 months and one partial response for 14.9 months. Median PFS and OS were 1.4 and 5.4 months, respectively. Common adverse events were fatigue (23%) and nausea (19%). ctDNA analysis showed emerging secondary mutations in NRAS and MEK in eight patients at time of BRAFi/MEKi resistance. Elimination of these mutations by vorinostat treatment was observed in three patients. CONCLUSIONS: Intermittent treatment with vorinostat in patients with resistant BRAFV600mutated melanoma is well tolerated. Although the primary endpoint of this study was not met, durable anti-tumor responses were observed in a minority of patients (9%).

3.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600345

RESUMEN

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Asunto(s)
Neoplasias del Colon , Empalme del ARN , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Empalme del ARN/efectos de los fármacos , Fosforilación , Línea Celular Tumoral , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Proteína Fosfatasa 2/metabolismo , Inhibidores Enzimáticos/farmacología
4.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552609

RESUMEN

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Asunto(s)
Neoplasias , Humanos , Carcinogénesis , Microbiota , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Obesidad/complicaciones , Calidad de Vida
5.
Cancer Discov ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533987

RESUMEN

Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress-response programs that counteract the inherent toxicity of such aberrant signaling. While inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of Protein Phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor suppressive resistance.

6.
Cell Rep Med ; 5(3): 101471, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508142

RESUMEN

Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.


Asunto(s)
Neoplasias Pulmonares , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
7.
Proc Natl Acad Sci U S A ; 121(9): e2319492121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377196

RESUMEN

The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Pulmonares , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Medicina de Precisión , Antineoplásicos/farmacología , Oncogenes , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , MAP Quinasa Quinasa 4
8.
Cancer Cell ; 42(2): 180-197, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38350421

RESUMEN

The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
9.
JCO Precis Oncol ; 8: e2200667, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237097

RESUMEN

PURPOSE: At the primary analysis, the APHINITY trial reported a statistically significant but modest benefit of adding pertuzumab to standard adjuvant chemotherapy plus trastuzumab in patients with histologically confirmed human epidermal growth factor receptor 2 (HER2)-positive early-stage breast cancer. This study evaluated whether the 80-gene molecular subtyping signature (80-GS) could identify patients within the APHINITY population who derive the most benefit from dual anti-HER2 therapy. METHODS: In a nested case-control study design of 1,023 patients (matched event to control ratio of 3:1), the 80-GS classified breast tumors into functional luminal type, HER2 type, or basal type. Additionally, 80-GS distinguished tumor subtypes that exhibited a single-dominant functional pathway versus tumors with multiple activated pathways. The primary end point was invasive disease-free survival (IDFS). Hazard ratios (HRs) were evaluated by Cox regression. After excluding patients without appropriate consent and those with missing data, 964 patients were included. RESULTS: The 80-GS classified 50% (n = 479) of tumors as luminal type, 28% (n = 275) as HER2 type, and 22% (n = 209) as basal type. Most luminal-type tumors (86%) displayed a single-activated pathway, whereas 49% of HER2-type and 42% of basal-type tumors were dual activated. There was no significant difference in IDFS among different conventional 80-GS subtypes (single- and dual-activated subtypes combined). However, basal single-subtype tumors were significantly more likely to have an IDFS event (hazard ratio, 1.69 [95% CI, 1.12 to 2.54]) compared with other subtypes. HER2 single-subtype tumors displayed a trend toward greater beneficial effect on the addition of pertuzumab (hazard ratio, 0.56 [95% CI, 0.27 to 1.16]) compared with all other subtypes. CONCLUSION: The 80-GS identified subgroups of histologically confirmed HER2-positive tumors with distinct biological characteristics. Basal single-subtype tumors exhibit an inferior prognosis compared with other subgroups and may be candidates for additional therapeutic strategies. Preliminary results suggest patients with HER2-positive, genomically HER2 single-subtype tumors may particularly benefit from added pertuzumab, which warrants further investigation.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama , Humanos , Femenino , Estudios de Casos y Controles , Trastuzumab/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
10.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38262581

RESUMEN

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Senescencia Celular , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Proteína Exportina 1 , Carioferinas , Neoplasias Hepáticas , Inhibidores de Proteínas Quinasas , Receptores Citoplasmáticos y Nucleares , Ubiquitina-Proteína Ligasas , Humanos , Senescencia Celular/efectos de los fármacos , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proteínas de Unión a Retinoblastoma/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Sinergismo Farmacológico , Senoterapéuticos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Hep G2 , Ratones , Piperazinas , Piridinas , Triazoles
11.
BJR Open ; 5(1): 20230019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953866

RESUMEN

Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune cells) have been visualised using 19F MRI, highlighting its potential for non-invasive and longitudinal molecular imaging. This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging, physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively. As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into biological processes non-invasively and longitudinally.

12.
Mol Oncol ; 17(6): 919-920, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37300661

RESUMEN

The formation of organisations and societies within all areas of scientific research facilitates the bringing together of researchers in a given field and serves to aid communication, collaboration, progress of science and career development. Even greater gain can be attained when individual organisations form partnerships to complement each other's activities and to increase the scope of their endeavours. Within this editorial, we highlight the key points of a new partnership formed between two non-profit bodies within cancer research, the European Association for Cancer Research (EACR) and Molecular Oncology, a journal wholly owned by the Federation of European Biochemical Societies (FEBS).


Asunto(s)
Neoplasias , Publicaciones Periódicas como Asunto , Sociedades Médicas , Humanos , Oncología Médica , Investigación Biomédica
14.
Cell ; 186(8): 1523-1527, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37059060

RESUMEN

Our understanding of tumorigenesis and cancer progression as well as clinical therapies for different cancer types have evolved dramatically in recent years. However, even with this progress, there are big challenges for scientists and oncologists to tackle, ranging from unpacking the molecular and cellular mechanisms involved to therapeutics and biomarker development to quality of life in the aftermath of therapy. In this article, we asked researchers to comment on the questions that they think are important to address in the coming years.


Asunto(s)
Neoplasias , Investigadores , Humanos , Carcinogénesis , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia , Calidad de Vida , Investigación , Biomarcadores de Tumor/sangre
15.
Mol Oncol ; 17(3): 382-383, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36750414

RESUMEN

The advent of a new generation of targeted cancer drugs requires a radically different design of early clinical trials. Here, René Bernards discusses why new clinical trial designs are needed and what is being done to achieve this. Such innovative trials can lead to similar outcomes for cancer patients with fewer side effects while at the same time reducing the cost of cancer care.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Ensayos Clínicos como Asunto , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida
16.
Nat Cancer ; 4(2): 240-256, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36759733

RESUMEN

BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through ß-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Familia-src Quinasas/genética , Familia-src Quinasas/uso terapéutico
17.
Mol Oncol ; 17(6): 964-980, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36650715

RESUMEN

Liver cancer is the fourth most common cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the main primary malignancy affecting the liver. Unfortunately, there are still limited therapeutic options for HCC, and even the latest advances have only increased the overall survival modestly. Thus, new treatment strategies and rational drug combinations are urgently needed. Reactivation of receptor tyrosine kinases (RTK) has been described as a mechanism of intrinsic resistance to targeted therapies in a variety of cancers, including inhibitors of mTOR. The design of rational combination therapies to overcome this type of resistance is complicated by the notion that multiple RTK can be upregulated during the acquisition of resistance. SHP2, encoded by the gene PTPN11, acts downstream of virtually all RTK, and has proven to be a good target for small molecule inhibitors. Here, we report activation of multiple RTK upon mTOR inhibition in HCC which, through SHP2, leads to reactivation of the mTOR pathway. We show that co-inhibition of both mTOR and SHP2 is highly synergistic in vitro by triggering apoptosis. More importantly, the combination is well-tolerated and outperforms the monotherapies in impairing tumor growth in multiple HCC mouse models. Our findings suggest a novel rational combination therapy for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/genética , Proteínas Tirosina Quinasas Receptoras
18.
Cell Res ; 33(1): 1-2, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36588118

Asunto(s)
Neoplasias , Humanos
19.
Nat Rev Drug Discov ; 22(3): 213-234, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509911

RESUMEN

Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
20.
Angiogenesis ; 26(2): 279-293, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36459240

RESUMEN

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Asunto(s)
Inhibidores de la Angiogénesis , Carcinoma de Células Renales , Células Endoteliales , Neoplasias Renales , Neovascularización Patológica , Humanos , Bevacizumab/inmunología , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio/efectos de los fármacos , Endotelio/inmunología , Endotelio/patología , Molécula 1 de Adhesión Intercelular/inmunología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Sunitinib/inmunología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Invasividad Neoplásica/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Inhibidores de la Angiogénesis/inmunología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA