Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Commun ; 14(1): 6729, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872178

RESUMEN

Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.


Asunto(s)
Tejido Adiposo Pardo , Mitocondrias , Animales , Masculino , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Plasmalógenos/metabolismo , Termogénesis/genética
2.
Diabetes ; 72(11): 1560-1573, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347719

RESUMEN

Besides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease. At the mechanistic level, lipolytic signals activate p53 in an adipose triglyceride lipase-dependent manner, and pharmacologic inhibition of p53 attenuates adipocyte-derived extracellular vesicle (AdEV) protein and FABP4 secretion. Mass spectrometry analyses of the lipolytic secretome identified proteins involved in glucose and fatty acid metabolism, translation, chaperone activities, and redox control. Consistent with a role for p53 in adipocyte protein secretion, activation of p53 by the MDM2 antagonist nutlin potentiated AdEV particles and non-AdEV protein secretion from cultured 3T3-L1 or OP9 adipocytes while the levels of FABP4 and AdEV proteins were significantly reduced in serum from p53-/- mice compared with wild-type controls. The genotoxin doxorubicin increased AdEV protein and FABP4 secretion in a p53-dependent manner and DNA repair-depleted ERCC1-/Δ-haploinsufficient mice expressed elevated p53 in adipose depots, along with significantly increased serum FABP4. In sum, these data suggest that lipolytic signals, and cellular stressors such as DNA damage, facilitate AdEV protein and FABP4 secretion by adipocytes in a p53-dependent manner.


Asunto(s)
Exosomas , Proteína p53 Supresora de Tumor , Animales , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Exosomas/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Lipólisis , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Mol Cancer Res ; 21(8): 836-848, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37115197

RESUMEN

Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS: These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.


Asunto(s)
Desmogleína 2 , Neoplasias , Ratones , Animales , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células Epiteliales/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Cadherinas/metabolismo , Obesidad
4.
FEBS Lett ; 597(8): 1055-1072, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36892429

RESUMEN

The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Nucleótidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espectroscopía de Resonancia Magnética , Sitios de Unión , Dominio Catalítico , Adenosina Trifosfato/química , Regulación Alostérica
5.
Biomedicines ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35740306

RESUMEN

More than 30% of people in the United States (US) are classified as obese, and over 50% are considered significantly overweight. Importantly, obesity is a risk factor not only for the development of metabolic syndrome but also for many cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is the third leading cause of cancer-related death, and 5-year survival of PDAC remains around 9% in the U.S. Obesity is a known risk factor for PDAC. Metabolic control and bariatric surgery, which is an effective treatment for severe obesity and allows massive weight loss, have been shown to reduce the risk of PDAC. It is therefore clear that elucidating the connection between obesity and PDAC is important for the identification of a novel marker and/or intervention point for obesity-related PDAC risk. In this review, we discussed recent progress in obesity-related PDAC in epidemiology, mechanisms, and potential cancer prevention effects of interventions, including bariatric surgery with preclinical and clinical studies.

6.
Endocrinology ; 163(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35136993

RESUMEN

Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1ß and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1ß/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lípidos , Macrófagos/metabolismo , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/metabolismo , Piroptosis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Surg Obes Relat Dis ; 18(4): 485-493, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34998697

RESUMEN

BACKGROUND: Obesity and diabetes are associated with an increased incidence of pancreatic cancer. Fatty acid binding protein 4 (FABP4), noted to be higher in patients with severe obesity, is linked to the development and progression of several cancers, and its level in the circulation decreases after bariatric surgery. OBJECTIVE: In this paper, we evaluate the role of FABP4 in pancreatic cancer progression. SETTING: University Hospital and Laboratories, United States. METHODS AND RESULTS: When Panc-1 (human) and Pan02 (mouse) pancreatic cancer cells were treated with FABP4 or the-single-point mutant FABP4 (R126Q, fatty acid binding site mutant), only FABP4 stimulated cellular proliferation. The transcriptional activity of nuclear factor E2-related factor 2 (NRF2) was increased in response to FABP4 but not the R126Q. FABP4 treatment also led to downregulation of reactive oxygen species (ROS) activity. Consistent with induced cell propagation by FABP4, the growth of Pan02 tumor was decreased in FABP4-null animals compared with C57BL/6J controls. CONCLUSION: These results suggest that FABP4 increases pancreatic cancer proliferation via activation of NRF2 and downregulation of ROS activity.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Factor 2 Relacionado con NF-E2 , Neoplasias Pancreáticas , Animales , Proliferación Celular , Proteínas de Unión a Ácidos Grasos/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
8.
J Mol Biol ; 433(18): 167123, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34224748

RESUMEN

Somatic mutations in the PRKACA gene encoding the catalytic α subunit of protein kinase A (PKA-C) are responsible for cortisol-producing adrenocortical adenomas. These benign neoplasms contribute to the development of Cushing's syndrome. The majority of these mutations occur at the interface between the two lobes of PKA-C and interfere with the enzyme's ability to recognize substrates and regulatory (R) subunits, leading to aberrant phosphorylation patterns and activation. Rarely, patients with similar phenotypes carry an allosteric mutation, E31V, located at the C-terminal end of the αA-helix and adjacent to the αC-helix, but structurally distinct from the PKA-C/R subunit interface mutations. Using a combination of solution NMR, thermodynamics, kinetic assays, and molecular dynamics simulations, we show that the E31V allosteric mutation disrupts central communication nodes between the N- and C- lobes of the enzyme as well as nucleotide-substrate binding cooperativity, a hallmark for kinases' substrate fidelity and regulation. For both orthosteric (L205R and W196R) and allosteric (E31V) Cushing's syndrome mutants, the loss of binding cooperativity is proportional to the density of the intramolecular allosteric network. This structure-activity relationship suggests a possible common mechanism for Cushing's syndrome driving mutations in which decreased nucleotide/substrate binding cooperativity is linked to loss in substrate fidelity and dysfunctional regulation.


Asunto(s)
Síndrome de Cushing/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación , Nucleótidos/metabolismo , Regulación Alostérica , Dominio Catalítico , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Nucleótidos/química , Nucleótidos/genética , Fenotipo , Fosforilación , Conformación Proteica , Especificidad por Sustrato
10.
Commun Biol ; 4(1): 321, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692454

RESUMEN

An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Fragmentos de Péptidos/metabolismo , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas del Choque Térmico HSP40/genética , Humanos , Ligandos , Simulación de Dinámica Molecular , Fragmentos de Péptidos/genética , Fosforilación , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo
11.
Int J Obes (Lond) ; 45(1): 143-154, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214705

RESUMEN

Lipocalin 2 (Lcn2), as an antimicrobial peptide is expressed in intestine, and the upregulation of intestinal Lcn2 has been linked to inflammatory bowel disease. However, the role of Lcn2 in shaping gut microbiota during diet-induced obesity (DIO) remains unknown. We found that short-term high fat diet (HFD) feeding strongly stimulates intestinal Lcn2 expression and secretion into the gut lumen. As the HFD feeding prolongs, fecal Lcn2 levels turn to decrease. Lcn2 deficiency accelerates the development of HFD-induced intestinal inflammation and microbiota dysbiosis. Moreover, Lcn2 deficiency leads to the remodeling of microbiota-derived metabolome, including decreased production of short-chain fatty acids (SCFAs) and SCFA-producing microbes. Most importantly, we have identified Lcn2-targeted bacteria and microbiota-derived metabolites that potentially play roles in DIO and metabolic dysregulation. Correlation analyses suggest that Lcn2-targeted Dubosiella and Angelakisella have a novel role in regulating SCFAs production and obesity. Our results provide a novel mechanism involving Lcn2 as an antimicrobial host factor in the control of gut microbiota symbiosis during DIO.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Lipocalina 2/metabolismo , Obesidad/metabolismo , Animales , Dieta Alta en Grasa , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Sci Rep ; 10(1): 20340, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230230

RESUMEN

Bariatric surgery is the most effective treatment for weight loss. Vertical sleeve gastrectomy (VSG) involves the resection of ~ 80% of the stomach and was conceived to purely restrict oral intake. However, evidence suggests more complex mechanisms, particularly postoperative changes in gut microbiota, in facilitating weight loss and resolving associated comorbidities. VSG in humans is a complex procedure and includes peri-operative antibiotics and caloric restriction in addition to the altered anatomy. The impact of each of these factors on the intestinal microbiota have not been evaluated. The aim of this study was to determine the relative contributions of each of these factors on intestinal microbiota composition following VSG prior to substantial weight loss. Thirty-two obese patients underwent one of three treatments: (1) VSG plus routine intravenous peri-operative antibiotics (n = 12), (2) VSG with intravenous vancomycin chosen for its low intestinal penetrance (n = 12), and (3) caloric restriction (n = 8). Fecal samples were evaluated for bacterial composition prior to and 7 days following each intervention. Only patients undergoing VSG with routine peri-operative antibiotics showed a significant shift in community composition. Our data support the single dose of routine peri-operative antibiotics as the most influential factor of intestinal microbial composition acutely following VSG.


Asunto(s)
Antibacterianos/efectos adversos , Cirugía Bariátrica/métodos , Disbiosis/inducido químicamente , Gastrectomía/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/cirugía , Atención Perioperativa/métodos , Adulto , Restricción Calórica/métodos , Heces/microbiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Pérdida de Peso
13.
J Lipid Res ; 61(5): 734-745, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32217606

RESUMEN

Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Sistemas de Transporte de Aminoácidos/deficiencia , Sistemas de Transporte de Aminoácidos/genética , Animales , Transporte Biológico , Línea Celular , AMP Cíclico/metabolismo , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , ARN Mensajero/genética , Adulto Joven
14.
Sci Adv ; 5(8): eaaw9298, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31489371

RESUMEN

Genetic alterations in the PRKACA gene coding for the catalytic α subunit of the cAMP-dependent protein kinase A (PKA-C) are linked to cortisol-secreting adrenocortical adenomas, resulting in Cushing's syndrome. Among those, a single mutation (L205R) has been found in up to 67% of patients. Because the x-ray structures of the wild-type and mutant kinases are essentially identical, the mechanism explaining aberrant function of this mutant remains under active debate. Using NMR spectroscopy, thermodynamics, kinetic assays, and molecular dynamics simulations, we found that this single mutation causes global changes in the enzyme, disrupting the intramolecular allosteric network and eliciting losses in nucleotide/pseudo-substrate binding cooperativity. Remarkably, by rewiring its internal allosteric network, PKA-CL205R is able to bind and phosphorylate non-canonical substrates, explaining its changes in substrate specificity. Both the lack of regulation and change in substrate specificity reveal the complex role of this mutated kinase in the formation of cortisol-secreting adrenocortical adenomas.


Asunto(s)
Regulación Alostérica/genética , Síndrome de Cushing/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Mutación/genética , Adenoma Corticosuprarrenal/genética , Dominio Catalítico/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Humanos , Hidrocortisona/genética , Especificidad por Sustrato
15.
Ann Surg ; 269(6): 1092-1100, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31082907

RESUMEN

OBJECTIVE: The aim of this study was to test whether the perioperative composition of intestinal microbiota can contribute to variable outcomes following vertical sleeve gastrectomy (VSG). SUMMARY OF BACKGROUND DATA: Although bariatric surgery is the most effective treatment for obesity, metabolic outcomes are variable. METHODS: Diet-induced obese mice were randomized to VSG or sham surgery, with or without exposure to antibiotics that selectively suppress mainly gram-positive (fidaxomicin, streptomycin) or gram-negative (ceftriaxone) bacteria on postoperative days (POD) 1-4. Fecal microbiota was characterized before surgery and on POD 7 and 28. Mice were metabolically characterized on POD 30-32 and euthanized on POD 35. RESULTS: VSG resulted in weight loss and shifts in the intestinal microbiota composition relative to sham-operated mice. Antibiotic exposure resulted in sustained reductions in alpha (within-sample) diversity of microbiota and shifts in its composition. All antibiotic treatments proved to be detrimental to metabolic VSG outcomes, regardless of antimicrobial specificity of antibiotics. These effects involved functionally distinct pathways. Specifically, fidaxomicin and streptomycin markedly altered hepatic bile acid signaling and lipid metabolism, while ceftriaxone resulted in greater reduction of key antimicrobial peptides. However, VSG mice exposed to antibiotics, regardless of their specificity, had significantly increased subcutaneous adiposity and impaired glucose homeostasis without changes in food intake relative to control VSG mice. CONCLUSION: Dysbiosis induced by brief perioperative antibiotic exposure attenuates weight loss and metabolic improvement following VSG. Potential mechanisms include disruption of bile acid homeostasis and reduction in the production of gut antimicrobial peptides. Results of this study implicate the intestinal microbiota as an important contributor to metabolic homeostasis and a potentially modifiable target influencing clinical outcomes following VSG.


Asunto(s)
Antibacterianos/uso terapéutico , Gastrectomía , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/cirugía , Pérdida de Peso , Animales , Ceftriaxona/uso terapéutico , Modelos Animales de Enfermedad , Fidaxomicina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/microbiología , Estreptomicina/uso terapéutico , Insuficiencia del Tratamiento
16.
Mol Metab ; 24: 18-29, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928474

RESUMEN

OBJECTIVES: Aging increases the risk for development of adipose tissue dysfunction, insulin resistance, dyslipidemia, and liver steatosis. Lipocalin 2 (Lcn2) deficient mice are more prone to diet-induced obesity and metabolic dysfunction, indicating a protective role for Lcn2 in younger mice. In this study, we determined whether overexpressing Lcn2 in adipose tissue can protect against age-related metabolic deterioration. METHODS: We developed ap2-promoter-driven Lcn2 transgenic (Tg) mice and aged Lcn2 Tg mice for the metabolic assessments. RESULTS: We found decreased adipocyte size in inguinal white adipose tissue (iWAT) from 10-month-old Lcn2 Tg mice relative to WT. This was accompanied by increased markers of adipogenesis in iWAT and attenuation of the age-related decline in AMP-activated protein kinase (AMPK) phosphorylation in adipose tissue depots. In addition to improvements in adipose tissue function, whole-body metabolic homeostasis was maintained in aged Lcn2 Tg mice. This included improved glucose tolerance and reduced serum triglycerides in older Lcn2 Tg mice relative to WT mice. Further, liver morphology and liver lipid levels were improved in older Lcn2 Tg mice, alongside a decrease in markers of liver inflammation and fibrosis. CONCLUSIONS: We demonstrate that overexpression of Lcn2 in adipose tissue not only preserves adipose tissue function during aging but also promotes maintenance of glucose tolerance, decreases dyslipidemia, and prevents liver lipid accumulation and steatosis.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Envejecimiento/metabolismo , Lipocalina 2/genética , Termogénesis , Quinasas de la Proteína-Quinasa Activada por el AMP , Tejido Adiposo Beige/crecimiento & desarrollo , Tejido Adiposo Blanco/crecimiento & desarrollo , Animales , Glucosa/metabolismo , Metabolismo de los Lípidos , Lipocalina 2/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo
17.
Surgery ; 165(3): 571-578, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30287050

RESUMEN

BACKGROUND: Serum concentrations of fatty acid binding protein 4, an adipose tissue fatty acid chaperone, have been correlated with insulin resistance and cardiovascular risk factors. The objective of this study were to assess relationships among Roux-en-Y gastric bypass, intensive lifestyle modification and medical management protocol, fatty acid binding protein 4, and metabolic parameters in obese patients with severe type 2 diabetes mellitus; and to evaluate the relative contribution of abdominal subcutaneous adipose and visceral adipose to the secretion of fatty acid binding protein 4. METHODS: Participants were randomly assigned to intensive lifestyle modification and medical management protocol (n = 29) or to intensive lifestyle modification and medical management protocol augmented with Roux-en-Y gastric bypass (n = 34). Relationships among fatty acid binding protein 4 and demographic characteristics, metabolic parameters, and 12-month changes in these values were examined. Visceral and subcutaneous adipose tissue explants from obese nondiabetic patients (n = 5) were obtained and treated with forskolin to evaluate relative secretion of fatty acid binding protein 4 in the different adipose tissue depots. RESULTS: The intensive lifestyle modification and medical management protocol and Roux-en-Y gastric bypass cohorts had similar fasting serum fatty acid binding protein 4 concentrations at baseline. At 1 year, mean serum fatty acid binding protein 4 decreased by 42% in Roux-en-Y gastric bypass participants (P = .002) but did not change significantly in the intensive lifestyle modification and medical management protocol cohort. Percentage of weight change was not a significant predictor of 12-month fatty acid binding protein 4 within treatment arm or in multivariate models adjusted for treatment arm. In adipose tissue explants, fatty acid binding protein 4 was secreted similarly between visceral and subcutaneous adipose tissue. CONCLUSION: After Roux-en-Y gastric bypass, fatty acid binding protein 4 is reduced 12 months after surgery but not after intensive lifestyle modification and medical management protocol in patients with type 2 diabetes mellitus. Fatty acid binding protein 4 was secreted similarly between subcutaneous and visceral adipose tissue explants.


Asunto(s)
Colforsina/uso terapéutico , Cuidados Críticos/métodos , Diabetes Mellitus Tipo 2/complicaciones , Proteínas de Unión a Ácidos Grasos/sangre , Derivación Gástrica/métodos , Obesidad/terapia , Conducta de Reducción del Riesgo , Adyuvantes Inmunológicos/uso terapéutico , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones , Resultado del Tratamiento
18.
J Mol Endocrinol ; 61(3): 115-126, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307164

RESUMEN

Lipocalin-2 (LCN2) has been previously characterized as an adipokine regulating thermogenic activation of brown adipose tissue and retinoic acid (RA)-induced thermogenesis in mice. The objective of this study was to explore the role and mechanism for LCN2 in the recruitment and retinoic acid-induced activation of brown-like or 'beige' adipocytes. We found LCN2 deficiency reduces key markers of thermogenesis including uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in inguinal white adipose tissue (iWAT) and inguinal adipocytes derived from Lcn2 −/− mice. Lcn2 −/− inguinal adipocytes have attenuated insulin-induced upregulation of thermogenic gene expression and p38 mitogen-activated protein kinase (p38MAPK) signaling pathway activation. This is accompanied by a lower basal and maximal oxidative capacity in Lcn2 −/− inguinal adipocytes, indicating mitochondrial dysfunction. Recombinant Lcn2 was able to restore insulin-induced p38MAPK phosphorylation in both WT and Lcn2 −/− inguinal adipocytes. Rosiglitazone treatment during differentiation of Lcn2 −/− adipocytes is able to recruit beige adipocytes at a normal level, however, further activation of beige adipocytes by insulin and RA is impaired in the absence of LCN2. Further, the synergistic effect of insulin and RA on UCP1 and PGC-1α expression is markedly reduced in Lcn2 −/− inguinal adipocytes. Most intriguingly, LCN2 and the retinoic acid receptor-alpha (RAR-α) are concurrently translocated to the plasma membrane of adipocytes in response to insulin, and this insulin-induced RAR-α translocation is absent in adipocytes deficient in LCN2. Our data suggest a novel LCN2-mediated pathway by which RA and insulin synergistically regulates activation of beige adipocytes via a non-genomic pathway of RA action.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Adipocitos Beige/metabolismo , Lipocalina 2/metabolismo , Tretinoina/farmacología , Tejido Adiposo/citología , Animales , Células Cultivadas , Lipocalina 2/deficiencia , Lipocalina 2/genética , Masculino , Ratones , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos
19.
J Biol Chem ; 293(35): 13464-13476, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012885

RESUMEN

In obesity-linked insulin resistance, oxidative stress in adipocytes leads to lipid peroxidation and subsequent carbonylation of proteins by diffusible lipid electrophiles. Reduction in oxidative stress attenuates protein carbonylation and insulin resistance, suggesting that lipid modification of proteins may play a role in metabolic disease, but the mechanisms remain incompletely understood. Herein, we show that in vivo, diet-induced obesity in mice surprisingly results in preferential carbonylation of nuclear proteins by 4-hydroxy-trans-2,3-nonenal (4-HNE) or 4-hydroxy-trans-2,3-hexenal (4-HHE). Proteomic and structural analyses revealed that residues in or around the sites of zinc coordination of zinc finger proteins, such as those containing the C2H2 or MATRIN, RING, C3H1, or N4-type DNA-binding domains, are particularly susceptible to carbonylation by lipid aldehydes. These observations strongly suggest that carbonylation functionally disrupts protein secondary structure supported by metal coordination. Analysis of one such target, the nuclear protein estrogen-related receptor γ (ERR-γ), showed that ERR-γ is modified by 4-HHE in the obese state. In vitro carbonylation decreased the DNA-binding capacity of ERR-γ and correlated with the obesity-linked down-regulation of many key genes promoting mitochondrial bioenergetics. Taken together, these findings reveal a novel mechanistic connection between oxidative stress and metabolic dysfunction arising from carbonylation of nuclear zinc finger proteins, such as the transcriptional regulator ERR-γ.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Obesidad/metabolismo , Carbonilación Proteica , Dedos de Zinc , Aldehídos/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/química , Ratones , Proteínas Nucleares/química , Estrés Oxidativo
20.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L227-L240, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29696987

RESUMEN

Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a proinflammatory role for FABP4 in allergic asthma although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, were not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild-type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced ß2-integrin expression relative to WT cells. Furthermore, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux, and ERK(1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNF-α, and cysteinyl leukotriene C4 levels, decreased airway structural changes) compared with WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a proinflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.


Asunto(s)
Movimiento Celular , Eosinófilos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Hipersensibilidad/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Adhesión Celular/genética , Citocinas/genética , Citocinas/metabolismo , Eosinófilos/patología , Proteínas de Unión a Ácidos Grasos/genética , Hipersensibilidad/genética , Hipersensibilidad/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA