Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Gen Appl Microbiol ; 69(2): 125-130, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302826

RESUMEN

Thermus thermophilus is reportedly polyploid and carries four to five identical genome copies per cell, based on molecular biological experiments. To directly detect polyploidy in this bacterium, we performed live cell imaging by X-ray free-electron laser (XFEL) diffraction and observed its internal structures. The use of femtosecond XFEL pulses enables snapshots of live, undamaged cells. For successful XFEL imaging, we developed a bacterial culture method using a starch- and casein-rich medium that produces a predominance of rod-shaped cells shorter than the focused XFEL beam size, which is slightly smaller than 2 µm. When cultured in the developed medium, the length of T. thermophilus cells, which is typically ~4 µm, was less than half its usual length. We placed living cells in a micro-liquid enclosure array and successively exposed each enclosure to a single XFEL pulse. A cell image was successfully obtained by the coherent diffractive imaging technique with iterative phase retrieval calculations. The reconstructed cell image revealed five peaks, which are most likely to be nucleoids, arranged in a row in the polyploid cell without gaps. This study demonstrates that XFELs offer a novel approach for visualizing the internal nanostructures of living, micrometer-sized, polyploid bacterial cells.


Asunto(s)
Rayos Láser , Thermus thermophilus , Humanos , Thermus thermophilus/genética , Rayos X , Difracción de Rayos X , Poliploidía
2.
Chembiochem ; 20(2): 140-146, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30378729

RESUMEN

Human tumor necrosis factor receptor associated factor (TRAF)-interacting protein, with a forkhead-associated domain (TIFA), is a key regulator of NF-κB activation. It also plays a key role in the activation of innate immunity in response to bacterial infection, through heptose 1,7-bisphosphate (HBP); a metabolite of lipopolysaccharide (LPS). However, the mechanism of TIFA function is largely unexplored, except for the suggestion of interaction with TRAF6. Herein, we provide evidence for direct binding, albeit weak, between TIFA and the TRAF domain of TRAF6, and it is shown that the binding is enhanced for a rationally designed double mutant, TIFA S174Q/M179D. Enhanced binding was also demonstrated for endogenous full-length TRAF6. Furthermore, the structures of the TRAF domain complexes with the consensus TRAF-binding peptides from the C terminus of wild-type and S174Q/M179D mutant TIFA, showing salt-bridge formation between residues 177-181 of TIFA and the binding pocket residues of the TRAF domain, were solved. Taken together, the results provide direct evidence and a structural basis for the TIFA-TRAF6 interaction, and show how this important biological function can be modulated.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Factor 6 Asociado a Receptor de TNF/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Conformación Proteica , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
3.
Mol Microbiol ; 98(6): 1199-221, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26337258

RESUMEN

Threonylcarbamoyladenosine (t(6)A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t(6)A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t(6)A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNA(Ile)-lysidine synthetase. We confirm that t(6)A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t(6)A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t(6)A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t(6)A(-) D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t(6)A in tRNAs. Thus, although t(6)A is universally conserved in tRNAs, its role in translation might vary greatly between organisms.


Asunto(s)
Adenosina/análogos & derivados , Deinococcus/genética , Escherichia coli/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación/genética , Secuencia Conservada , Deinococcus/metabolismo , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Células Procariotas , Proteómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Saccharomyces cerevisiae/genética
4.
J Struct Funct Genomics ; 15(3): 173-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24894648

RESUMEN

The N (1)-methyladenosine residue at position 58 of tRNA is found in the three domains of life, and contributes to the stability of the three-dimensional L-shaped tRNA structure. In thermophilic bacteria, this modification is important for thermal adaptation, and is catalyzed by the tRNA m(1)A58 methyltransferase TrmI, using S-adenosyl-L-methionine (AdoMet) as the methyl donor. We present the 2.2 Å crystal structure of TrmI from the extremely thermophilic bacterium Aquifex aeolicus, in complex with AdoMet. There are four molecules per asymmetric unit, and they form a tetramer. Based on a comparison of the AdoMet binding mode of A. aeolicus TrmI to those of the Thermus thermophilus and Pyrococcus abyssi TrmIs, we discuss their similarities and differences. Although the binding modes to the N6 amino group of the adenine moiety of AdoMet are similar, using the side chains of acidic residues as well as hydrogen bonds, the positions of the amino acid residues involved in binding are diverse among the TrmIs from A. aeolicus, T. thermophilus, and P. abyssi.


Asunto(s)
Aquifoliaceae/enzimología , Complejos Multiproteicos/ultraestructura , S-Adenosilmetionina/química , ARNt Metiltransferasas/química , ARNt Metiltransferasas/ultraestructura , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Datos de Secuencia Molecular , Unión Proteica , Pyrococcus abyssi/enzimología , Alineación de Secuencia , Thermus thermophilus/enzimología
5.
BMC Struct Biol ; 13: 10, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23688113

RESUMEN

BACKGROUND: In the anaerobic pathway of cobalamin (vitamin B12) synthesis, the CbiT enzyme plays two roles, as a cobalt-precorrin-7 C15-methyltransferase and a C12-decarboxylase, to produce the intermediate, cobalt-precorrin 8. RESULTS: The primary structure of the hypothetical protein MJ0391, from Methanocaldococcus jannaschii, suggested that MJ0391 is a putative CbiT. Here, we report the crystal structure of MJ0391, solved by the MAD procedure and refined to final R-factor and R-free values of 19.8 & 27.3%, respectively, at 2.3 Å resolution. The asymmetric unit contains two NCS molecules, and the intact tetramer generated by crystallographic symmetry may be functionally important. The overall tertiary structure and the tetrameric arrangements are highly homologous to those found in MT0146/CbiT from Methanobacterium thermoautotrophicum. CONCLUSIONS: The conservation of functional residues in the binding site for the co-factor, AdoMet, and in the putative precorrin-7 binding pocket suggested that MJ0391 may also possess CbiT activity. The putative function of MJ0391 is discussed, based on structural homology.


Asunto(s)
Proteínas Arqueales/química , Methanocaldococcus/enzimología , Metiltransferasas/química , Vitamina B 12/biosíntesis , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Uroporfirinas/química , Uroporfirinas/metabolismo
6.
Nucleic Acids Res ; 41(13): 6531-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658230

RESUMEN

In most bacteria, two tRNAs decode the four arginine CGN codons. One tRNA harboring a wobble inosine (tRNA(Arg)ICG) reads the CGU, CGC and CGA codons, whereas a second tRNA harboring a wobble cytidine (tRNA(Arg)CCG) reads the remaining CGG codon. The reduced genomes of Mycoplasmas and other Mollicutes lack the gene encoding tRNA(Arg)CCG. This raises the question of how these organisms decode CGG codons. Examination of 36 Mollicute genomes for genes encoding tRNA(Arg) and the TadA enzyme, responsible for wobble inosine formation, suggested an evolutionary scenario where tadA gene mutations first occurred. This allowed the temporary accumulation of non-deaminated tRNA(Arg)ACG, capable of reading all CGN codons. This hypothesis was verified in Mycoplasma capricolum, which contains a small fraction of tRNA(Arg)ACG with a non-deaminated wobble adenosine. Subsets of Mollicutes continued to evolve by losing both the mutated tRNA(Arg)CCG and tadA, and then acquired a new tRNA(Arg)UCG. This permitted further tRNA(Arg)ACG mutations with tRNA(Arg)GCG or its disappearance, leaving a single tRNA(Arg)UCG to decode the four CGN codons. The key point of our model is that the A-to-I deamination activity had to be controlled before the loss of the tadA gene, allowing the stepwise evolution of Mollicutes toward an alternative decoding strategy.


Asunto(s)
Adenosina Desaminasa/genética , Codón , Evolución Molecular , Mycoplasma/genética , ARN de Transferencia de Arginina/genética , Tenericutes/genética , Adenosina/metabolismo , Adenosina Desaminasa/química , Secuencia de Aminoácidos , Arginina/metabolismo , Desaminación , Datos de Secuencia Molecular , Mycoplasma/enzimología , Mycoplasma capricolum/genética , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/metabolismo , Alineación de Secuencia , Tenericutes/enzimología
7.
J Biol Chem ; 287(52): 43950-60, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23091054

RESUMEN

Post-transcriptional modifications of the wobble uridine (U34) of tRNAs play a critical role in reading NNA/G codons belonging to split codon boxes. In a subset of Escherichia coli tRNA, this wobble uridine is modified to 5-methylaminomethyluridine (mnm(5)U34) through sequential enzymatic reactions. Uridine 34 is first converted to 5-carboxymethylaminomethyluridine (cmnm(5)U34) by the MnmE-MnmG enzyme complex. The cmnm(5)U34 is further modified to mnm(5)U by the bifunctional MnmC protein. In the first reaction, the FAD-dependent oxidase domain (MnmC1) converts cmnm(5)U into 5-aminomethyluridine (nm(5)U34), and this reaction is immediately followed by the methylation of the free amino group into mnm(5)U34 by the S-adenosylmethionine-dependent domain (MnmC2). Aquifex aeolicus lacks a bifunctional MnmC protein fusion and instead encodes the Rossmann-fold protein DUF752, which is homologous to the methyltransferase MnmC2 domain of Escherichia coli MnmC (26% identity). Here, we determined the crystal structure of the A. aeolicus DUF752 protein at 2.5 Å resolution, which revealed that it catalyzes the S-adenosylmethionine-dependent methylation of nm(5)U in vitro, to form mnm(5)U34 in tRNA. We also showed that naturally occurring tRNA from A. aeolicus contains the 5-mnm group attached to the C5 atom of U34. Taken together, these results support the recent proposal of an alternative MnmC1-independent shortcut pathway for producing mnm(5)U34 in tRNAs.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , ARNt Metiltransferasas/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Metilación , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Homología de Secuencia de Aminoácido , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
8.
J Biol Chem ; 286(40): 35236-46, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21844194

RESUMEN

Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1.


Asunto(s)
Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/química , Alanina , Sitios de Unión , Cristalografía por Rayos X/métodos , Enlace de Hidrógeno , Cinética , Metilación , Modelos Químicos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , ARN de Transferencia/química , Proteínas Recombinantes/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/fisiología
9.
Proteins ; 79(7): 2065-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21538543

RESUMEN

The hypermodified nucleoside N(6)-threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N(6)-threonylcarbamoyl moiety is composed of L-threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L-threonine-binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L-threonine more strongly than L-serine and glycine. The Kd values of Sua5 for L-threonine and L-serine are 9.3 µM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L-threonine, at 1.8 Å resolution. The L-threonine is bound next to AMPPNP in the same pocket of the N-terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine-specific recognition. The carboxyl group and the side-chain hydroxyl and methyl groups of L-threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L-threonine is located in a suitable position to react together with ATP for the synthesis of N(6)-threonylcarbamoyladenosine.


Asunto(s)
Adenilil Imidodifosfato/química , Proteínas Arqueales/química , Proteínas de Unión al ARN/química , Sulfolobus/química , Treonina/química , Adenilil Imidodifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Calorimetría , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Treonina/metabolismo , Difracción de Rayos X
10.
Protein Sci ; 20(7): 1105-13, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21574198

RESUMEN

Post-transcriptional modifications of bases within the transfer RNAs (tRNA) anticodon significantly affect the decoding system. In bacteria and eukaryotes, uridines at the wobble position (U34) of some tRNAs are modified to 5-methyluridine derivatives (xm5U). These xm5U34-containing tRNAs read codons ending with A or G, whereas tRNAs with the unmodified U34 are able to read all four synonymous codons of a family box. In Escherichia coli (E.coli), the bifunctional enzyme MnmC catalyzes the two consecutive reactions that convert 5-carboxymethylaminomethyl uridine (cmnm5U) to 5-methylaminomethyl uridine (mnm5U). The C-terminal domain of MnmC (MnmC1) is responsible for the flavin adenine dinucleotide (FAD)-dependent deacetylation of cmnm5U to 5-aminomethyl uridine (nm5U), whereas the N-terminal domain (MnmC2) catalyzes the subsequent S-adenosyl-L-methionine-dependent methylation of nm5U, leading to the final product, mnm5U34. Here, we determined the crystal structure of E.coli MnmC containing FAD, at 3.0 Å resolution. The structure of the MnmC1 domain can be classified in the FAD-dependent glutathione reductase 2 structural family, including the glycine oxidase ThiO, whereas the MnmC2 domain adopts the canonical class I methyltransferase fold. A structural comparison with ThiO revealed the residues that may be involved in cmnm5U recognition, supporting previous mutational analyses. The catalytic sites of the two reactions are both surrounded by conserved basic residues for possible anticodon binding, and are located far away from each other, on opposite sides of the protein. These results suggest that, although the MnmC1 and MnmC2 domains are physically linked, they could catalyze the two consecutive reactions in a rather independent manner.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Complejos Multienzimáticos/química , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
11.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 12): 1301-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21123870

RESUMEN

One of the modified nucleosides that frequently occurs in rRNAs and tRNAs is 5-methylcytidine (m5C). Escherichia coli Fmu/RsmB/RrmB is an S-adenosyl-L-methionine (AdoMet)-dependent methyltransferase that forms m5C967 in 16S rRNA. Fmu/RsmB/RrmB homologues exist not only in bacteria but also in archaea and eukarya and constitute a large orthologous group in the RNA:m5C methyltransferase family. In the present study, the crystal structure of a homologue of E. coli Fmu/RsmB/RrmB from the archaeon Pyrococcus horikoshii (PH0851) complexed with an AdoMet analogue was determined at 2.55 Å resolution. The structure and sequence of the C-terminal catalytic domain are highly conserved compared with those of E. coli Fmu/RsmB/RrmB. In contrast, the sequence of the N-terminal domain is negligibly conserved between the bacterial and archaeal subfamilies. Nevertheless, the N-terminal domains of PH0851 and E. coli Fmu/RsmB/RrmB are both α-helical and adopt a similar topology. Next to the AdoMet-binding site, a positively charged cleft is formed between the N- and C-terminal domains. This cleft is conserved in the archaeal PH0851 homologues and seems to be suitable for binding the RNA substrate.


Asunto(s)
Metiltransferasas/química , Pyrococcus horikoshii/enzimología , Secuencia de Aminoácidos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
12.
J Mol Biol ; 401(3): 323-33, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20600111

RESUMEN

tRNA:m(5)C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 A and 2.3 A resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix alpha8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.


Asunto(s)
Adenosina/análogos & derivados , Methanococcaceae/enzimología , ARNt Metiltransferasas/química , Adenosina/química , Aminoácidos , Antibacterianos/química , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae
13.
Nat Struct Mol Biol ; 16(10): 1109-15, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19749755

RESUMEN

tRNA precursors undergo a maturation process, involving nucleotide modifications and folding into the L-shaped tertiary structure. The N1-methylguanosine at position 37 (m1G37), 3' adjacent to the anticodon, is essential for translational fidelity and efficiency. In archaea and eukaryotes, Trm5 introduces the m1G37 modification into all tRNAs bearing G37. Here we report the crystal structures of archaeal Trm5 (aTrm5) in complex with tRNA(Leu) or tRNA(Cys). The D2-D3 domains of aTrm5 discover and modify G37, independently of the tRNA sequences. D1 is connected to D2-D3 through a flexible linker and is designed to recognize the shape of the tRNA outer corner, as a hallmark of the completed L shape formation. This interaction by D1 lowers the K(m) value for tRNA, enabling the D2-D3 catalysis. Thus, we propose that aTrm5 provides the tertiary structure checkpoint in tRNA maturation.


Asunto(s)
Anticodón/química , ARN de Transferencia/química , Alanina/química , Archaea , Catálisis , Codón , Cristalografía por Rayos X/métodos , Cisteína/química , Cinética , Modelos Moleculares , Conformación Molecular , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Temperatura
14.
J Biol Chem ; 284(31): 20467-78, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19491098

RESUMEN

Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m(2)(2)G26) in tRNA. In the reaction, N2-guanine at position 26 (m(2)G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNA(Cys) has an m(2)(2)G26m(2)G27 or m(2)(2)G26m(2)(2)G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m(2)G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Biocatálisis , Guanina/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Bacterias/citología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Cinética , Espectrometría de Masas , Metilación , Viabilidad Microbiana , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , ARNt Metiltransferasas/química , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/aislamiento & purificación
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 12): 1204-8, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20054112

RESUMEN

SurE is a stationary-phase survival protein found in bacteria, eukaryotes and archaea that exhibits a divalent-metal-ion-dependent phosphatase activity and acts as a nucleotidase and polyphosphate phosphohydrolase. The structure of the SurE protein from the hyperthermophile Aquifex aeolicus has been solved at 1.5 A resolution using molecular replacement with one dimer in the asymmetric unit and refined to an R factor of 15.6%. The crystal packing reveals that two dimers assemble to form a tetramer, although gel-filtration chromatography showed the presence of only a dimer in solution. The phosphatase active-site pocket was occupied by sulfate ions from the crystallization medium.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Fosfatasa Ácida/química , Bacterias/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Genes Bacterianos , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Electricidad Estática
16.
J Mol Biol ; 383(4): 871-84, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18789948

RESUMEN

Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA*Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.


Asunto(s)
Estructura Terciaria de Proteína , Pyrococcus horikoshii/enzimología , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación de Ácido Nucleico , ARN de Transferencia/química , ARN de Transferencia/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , ARNt Metiltransferasas/genética
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 6): 498-500, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18540059

RESUMEN

Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6(4)22, with unit-cell parameters a = b = 148.49, c = 106.96 A, gamma = 120.0 degrees . Assuming the presence of two molecules in the asymmetric unit, the calculated V(M) is 2.84 A(3) Da(-1), which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 A resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Thermotoga maritima/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Escherichia coli/genética , Vectores Genéticos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Estructura Terciaria de Proteína , Difracción de Rayos X
18.
J Mol Biol ; 375(4): 1064-75, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18068186

RESUMEN

The conserved cytidine residue at position 56 of tRNA contributes to the maintenance of the L-shaped tertiary structure. aTrm56 catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Based on the amino acid sequence, aTrm56 is the most distant member of the SpoU family. Here, we determined the crystal structure of Pyrococcus horikoshii aTrm56 complexed with S-adenosyl-L-methionine at 2.48 A resolution. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot, and a unique C-terminal beta-hairpin. aTrm56 forms a dimer. The S-adenosyl-L-methionine binding and dimerization of aTrm56 were similar to those of the other SpoU members. A structure-based sequence alignment revealed that aTrm56 conserves only motif II, among the four signature motifs. However, an essential Arg16 residue is located at a novel position within motif I. Biochemical assays showed that aTrm56 prefers the L-shaped tRNA to the lambda form as its substrate.


Asunto(s)
Citidina/análogos & derivados , Citidina/química , ARN de Archaea/química , ARN de Transferencia/química , ARNt Metiltransferasas/química , ARNt Metiltransferasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Metilación , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus horikoshii/enzimología , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Homología de Secuencia de Aminoácido , ARNt Metiltransferasas/metabolismo
19.
Structure ; 15(12): 1642-53, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18073113

RESUMEN

In the bacterial genetic-code system, the codon AUA is decoded as isoleucine by tRNA(Ile)(2) with the lysidine residue at the wobble position. Lysidine is derived from cytidine, with ATP and L-lysine, by tRNA(Ile) lysidine synthetase (TilS), which is an N-type ATP pyrophosphatase. In this study, we determined the crystal structure of Aquifex aeolicus TilS, complexed with ATP, Mg2+, and L-lysine, at 2.5 A resolution. The presence of the TilS-specific subdomain causes the active site to have two separate gateways, a large hole and a narrow tunnel on the opposite side. ATP is bound inside the hole, and L-lysine is bound at the entrance of the tunnel. The conserved Asp36 in the PP-motif coordinates Mg2+. In these initial binding modes, the ATP, Mg2+, and L-lysine are held far apart from each other, but they seem to be brought together for the reaction upon cytidine binding, with putative structural changes of the complex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Lisina/metabolismo , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Lisina/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
20.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 10): 1059-68, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17881823

RESUMEN

Wye bases are tricyclic bases that are found in archaeal and eukaryotic tRNAs. The most modified wye base, wybutosine, which appears at position 37 (the 3'-adjacent position to the anticodon), is known to be important for translational reading-frame maintenance. Saccharomyces cerevisiae TYW1 catalyzes the tri-ring-formation step in wye-base biosynthesis, with the substrate tRNA bearing N(1)-methylated G37. Here, the crystal structure of the archaeal TYW1 homologue from Pyrococcus horikoshii is reported at 2.2 A resolution. The amino-acid sequence of P. horikoshii TYW1 suggested that it is a radical-AdoMet enzyme and the tertiary structure of P. horikoshii TYW1 indeed shares the modified TIM-barrel structure found in other radical-AdoMet enzymes. Radical-AdoMet enzymes generally contain one or two iron-sulfur (FeS) clusters. The tertiary structure of P. horikoshii TYW1 revealed two FeS cluster sites, each containing three cysteine residues. One FeS cluster site was expected from the amino-acid sequence and the other involves cysteine residues that are dispersed throughout the sequence. The existence of two FeS clusters was confirmed from the anomalous Fourier electron-density map. By superposing the P. horikoshii TYW1 tertiary structure on those of other radical-AdoMet enzymes, the AdoMet molecule, which is necessary for the reactions of radical-AdoMet enzymes, was modelled in P. horikoshii TYW1. Surface plots of conservation rates and electrostatic potentials revealed the highly conserved and positively charged active-site hollow. On the basis of the surface properties, a docking model of P. horikoshii TYW1, the tRNA, the FeS clusters and the AdoMet molecule was constructed, with the nucleoside at position 37 of tRNA flipped out from the canonical tRNA structure.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/química , Enzimas/química , Nucleósidos/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X/métodos , Proteínas Hierro-Azufre/química , Conformación Molecular , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus horikoshii/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA