Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Biochem Soc Trans ; 52(2): 567-580, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629621

RESUMEN

The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.


Asunto(s)
Homeostasis , Fosfatos de Inositol , Polifosfatos , Polifosfatos/metabolismo , Animales , Fosfatos de Inositol/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Dictyostelium/metabolismo , Transducción de Señal
2.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34841428

RESUMEN

Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independently of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localise to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2 and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5' mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T (also known as EIF4ENIF1) and the cap-binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
MicroARNs , Cuerpos de Procesamiento , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato) , Proteínas , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética
3.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208421

RESUMEN

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Fosfatos de Inositol/biosíntesis , Inositol/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Animales , Pruebas de Enzimas/métodos , Inositol/química , Ratones , Simulación del Acoplamiento Molecular , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Transducción de Señal , Especificidad por Sustrato
4.
Biochem J ; 478(8): 1647-1661, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33821962

RESUMEN

The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/deficiencia , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Ubiquitinación
5.
Angew Chem Int Ed Engl ; 58(12): 3928-3933, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30681761

RESUMEN

An iterative polyphosphorylation approach is described, which is based on a phosphoramidite (P-amidite) derived reagent (c-PyPA) obtained from the cyclization of pyrophosphate with a reactive diisopropylaminodichlorophosphine. This type of reagent is unprecedented as it represents a reactive P-amidite without protecting groups. The reagent proved to be stable in solution over several weeks. Its utility is described in the context of iterative monodirectional and bidirectional polyphosphorylations. The ensuing functionalized cyclotriphosphate can be opened with a variety of nucleophiles providing ready access to diverse functionalized polyphosphate chains of defined length with several tags, including both P-N and P-O labels. Their interaction with exo- and endopolyphosphatases is described.

6.
Faraday Discuss ; 207(0): 91-113, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29362761

RESUMEN

Protein Charge Transfer Spectra (ProCharTS) originate when charged amino/carboxylate groups in the side chains of Lys/Glu act as electronic charge acceptors/donors for photoinduced charge transfer either from/to the polypeptide backbone or to each other. The absorption band intensities in ProCharTS at wavelengths of 250-800 nm are dependent on the 3D spatial proximity of these charged functional groups across the protein. Intrinsically disordered proteins (IDPs) are an important class of proteins involved in signalling and regulatory functions in the eukaryotic cell. IDPs are rich in charged amino acids, but lack structure-promoting intrinsic spectral probes like Tyr or Trp in their sequences, making their structural characterisation difficult. Here, we exploit the richness of charged amino acid populations among IDPs (like the PEST fragment of human c-Myc, its mutant and dehydrin from maize) to sense structural transitions in IDPs using ProCharTS absorption spectra. Conformational changes induced in the protein by altering the pH and temperature of the aqueous medium were monitored by ProCharTS and confirmed by CD spectra. Further, the utility of ProCharTS to detect protein aggregation was examined using Hen Egg-White Lysozyme (HEWL) protein. The results revealed that in the presence of Trp/Tyr, ProCharTS absorbance was substantially reduced, specifically at wavelengths where the absorption by Trp or Tyr was near its maximum. Significant changes in the ProCharTS spectra were observed with changing pH in the range of 3-11, which correlated with changes in the secondary structure of the PEST fragment. Importantly, the absorbance at 280 nm, which is often employed as a measure of protein concentration, was profoundly altered by changes in ProCharTS intensity in response to changing the pH in dehydrin. The ProCharTS intensity was sensitive to temperature-induced changes in the secondary structures of the PEST fragments between 25-85 °C. The presence of 0.25 M NaCl or KCl in the medium also altered the ProCharTS spectrum. Finally, an increase in ProCharTS absorbance with time in HEWL at pH 2 directly correlated with the growth of HEWL aggregates and amyloid fibrils, as confirmed by the increasing thioflavin T fluorescence. Taken together, our work highlights the utility of ProCharTS as a label-free intrinsic probe to monitor changes in protein charge, structure and oligomeric state.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Intrínsecamente Desordenadas/química , Muramidasa/química , Proteínas de Plantas/química , Factores de Transcripción/química , Animales , Pollos , Humanos , Concentración de Iones de Hidrógeno , Espectrofotometría Ultravioleta , Temperatura
7.
Biochem J ; 473(19): 3031-47, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474409

RESUMEN

Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP7), are conserved eukaryotic signaling molecules that possess pyrophosphate and monophosphate moieties. Generated predominantly by inositol hexakisphosphate kinases (IP6Ks), inositol pyrophosphates can modulate protein function by posttranslational serine pyrophosphorylation. Here, we report inositol pyrophosphates as novel regulators of cytoplasmic dynein-driven vesicle transport. Mammalian cells lacking IP6K1 display defects in dynein-dependent trafficking pathways, including endosomal sorting, vesicle movement, and Golgi maintenance. Expression of catalytically active but not inactive IP6K1 reverses these defects, suggesting a role for inositol pyrophosphates in these processes. Endosomes derived from slime mold lacking inositol pyrophosphates also display reduced dynein-directed microtubule transport. We demonstrate that Ser51 in the dynein intermediate chain (IC) is a target for pyrophosphorylation by IP7, and this modification promotes the interaction of the IC N-terminus with the p150(Glued) subunit of dynactin. IC-p150(Glued) interaction is decreased, and IC recruitment to membranes is reduced in cells lacking IP6K1. Our study provides the first evidence for the involvement of IP6Ks in dynein function and proposes that inositol pyrophosphate-mediated pyrophosphorylation may act as a regulatory signal to enhance dynein-driven transport.


Asunto(s)
Citoplasma/metabolismo , Dineínas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Endosomas/enzimología , Femenino , Aparato de Golgi/enzimología , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Fosforilación , Transporte de Proteínas
8.
Cell Signal ; 28(8): 1124-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27140681

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis.


Asunto(s)
Movimiento Celular , Eliminación de Gen , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/patología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , 4-Nitroquinolina-1-Óxido , Animales , Adhesión Celular , Movimiento Celular/genética , Espacio Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Células HeLa , Neoplasias de Cabeza y Cuello/genética , Humanos , Fosfatos de Inositol/farmacología , Ratones Noqueados , Invasividad Neoplásica , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Quinolonas , ARN Interferente Pequeño/metabolismo , Transducción de Señal
9.
Blood ; 122(8): 1478-86, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23782934

RESUMEN

Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.


Asunto(s)
Plaquetas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/fisiología , Polifosfatos/metabolismo , Animales , Tiempo de Sangría , Coagulación Sanguínea , Hemostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selectina-P/metabolismo , Ácido Fítico/metabolismo , Embolia Pulmonar/metabolismo , Trombina/metabolismo , Tromboembolia/sangre
10.
Methods Mol Biol ; 645: 87-102, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20645183

RESUMEN

Diphosphoinositol polyphosphates, also known as inositol pyrophosphates, are a family of water soluble inositol phosphates that possess diphosphate or pyrophosphate moieties. In the presence of divalent cations such as Mg(2+), the "high energy" beta phosphate can be transferred from the inositol pyrophosphates, InsP(7) and InsP(8), to prephosphorylated serine residues on proteins, to form pyrophosphoserine. This chapter provides detailed methods to identify proteins that are substrates for pyrophosphorylation by InsP(7), conduct phosphorylation assays on purified protein, and detect protein pyrophosphorylation.


Asunto(s)
Bioquímica/métodos , Difosfatos/análisis , Fosfatos de Inositol/análisis , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Autorradiografía/métodos , Western Blotting/métodos , Difosfatos/metabolismo , Escherichia coli/genética , Expresión Génica , Fosfatos de Inositol/metabolismo , Datos de Secuencia Molecular , Fosforilación , Proteínas/genética , Proteínas/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética
11.
Mol Cell Biol ; 29(19): 5277-89, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19620276

RESUMEN

Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.


Asunto(s)
Neoplasias del Colon/metabolismo , Guanilato Ciclasa/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Tirosina Quinasa CSK , Ciclo Celular , Línea Celular Tumoral , Neoplasias del Colon/patología , Progresión de la Enfermedad , Activación Enzimática , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Ratas , Ratas Wistar , Receptores de Enterotoxina , Receptores Acoplados a la Guanilato-Ciclasa , Receptores de Péptidos/química , Receptores de Péptidos/genética , Alineación de Secuencia , Familia-src Quinasas
12.
Chem Biol ; 15(3): 274-86, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18355727

RESUMEN

Eukaryotic cells produce a family of diverse inositol polyphosphates (IPs) containing pyrophosphate bonds. Inositol pyrophosphates have been linked to a wide range of cellular functions, and there is growing evidence that they act as second messengers. Inositol hexakisphosphate kinase (IP6K) is able to convert the natural substrates inositol pentakisphosphate (IP 5) and inositol hexakisphosphate (IP 6) to several products with an increasing number of phospho-anhydride bonds. In this study, we structurally analyzed IPs synthesized by three mammalian isoforms of IP6K from IP 5 and IP 6. The NMR and mass analyses showed a number of products with diverse, yet specific, stereochemistry, defined by the architecture of IP6K's active site. We now report that IP6K synthesizes both pyrophosphate (diphospho) as well as triphospho groups on the inositol ring. All three IP6K isoforms share the same activities both in vitro and in vivo.


Asunto(s)
Difosfatos/análisis , Difosfatos/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polifosfatos/análisis , Polifosfatos/química , Ácido Cacodílico/farmacología , Cromatografía Líquida de Alta Presión , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Isoenzimas/metabolismo , Espectrometría de Masas , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Ácido Fítico/química , Ácido Fítico/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 104(39): 15305-10, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17873058

RESUMEN

In a previous study, we showed that the inositol pyrophosphate diphosphoinositol pentakisphosphate (IP(7)) physiologically phosphorylates mammalian and yeast proteins. We now report that this phosphate transfer reflects pyrophosphorylation. Thus, proteins must be prephosphorylated by ATP to prime them for IP(7) phosphorylation. IP(7) phosphorylates synthetic phosphopeptides but not if their phosphates have been masked by methylation or pyrophosphorylation. Moreover, IP(7) phosphorylated peptides are more acid-labile and more resistant to phosphatases than ATP phosphorylated peptides, indicating a different type of phosphate bond. Pyrophosphorylation may represent a novel mode of signaling to proteins.


Asunto(s)
Adenosina Trifosfato/química , Fosfatos de Inositol/química , Secuencia de Aminoácidos , Difosfatos/química , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Metilación , Datos de Secuencia Molecular , Péptidos/química , Fosfatos/química , Fosforilación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
14.
Science ; 306(5704): 2101-5, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15604408

RESUMEN

The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.


Asunto(s)
Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Magnesio/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Fosfatos/metabolismo , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Transducción de Señal , Temperatura
15.
J Immunol Methods ; 287(1-2): 147-58, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15099763

RESUMEN

Individual domains from extracellular proteins are potential reagents for biochemical characterization of ligand/receptor interactions and antibody binding sites. Here, we describe an approach for the identification and characterization of stable protein domains with cell surface display in Saccharomyces cerevesiae, using the epidermal growth factor receptor (EGFR) as a model system. Fragments of the EGFR were successfully expressed on the yeast cell surface. The yeast-displayed EGFR fragments were properly folded, as assayed with conformationally specific EGFR antibodies. Heat denaturation of yeast-displayed EGFR proteins distinguished between linear and conformational antibody epitopes. In addition, EGFR-specific antibodies were categorized based on their ability to compete ligand binding, which has been shown to have therapeutic implications. Overlapping EGFR antibody epitopes were determined based on a fluorescent competitive binding assay. Yeast surface display is a useful method for identifying stable folded protein domains from multidomain extracellular receptors, as well as characterizing antibody binding epitopes, without the need for soluble protein expression and purification.


Asunto(s)
Anticuerpos/análisis , Mapeo Epitopo/métodos , Receptores ErbB/inmunología , Fragmentos de Péptidos/inmunología , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/inmunología , Animales , Afinidad de Anticuerpos , Antígenos de Superficie/inmunología , Unión Competitiva , Humanos , Inmunoensayo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA