Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nanoscale ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091152

RESUMEN

Dopamine is a neurotransmitter in the central nervous system that is essential for many bodily and mental processes, and a lack of it can cause Parkinson's disease. DNA tetrahedral (TD) nanocages are promising in bio-nanotechnology, especially as a nanocarrier. TD is highly programmable, biocompatible, and capable of cell differentiation and proliferation. It also has tissue and blood-brain barrier permeability, making it a powerful tool that could overcome potential barriers in treating neurological disorders. In this study, we used DNA TD as a carrier for dopamine to cells and zebrafish embryos. We investigated the mechanism of complexation between TD and dopamine hydrochloride using gel electrophoresis, fluorescence and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and molecular dynamic (MD) simulation tools. Further, we demonstrate that these dopamine-loaded DNA TD nanostructures enhanced cellular uptake and differentiation ability in SH-SY5Y neuroblastoma cells. Furthermore, we extended the study to zebrafish embryos as a model organism to examine survival and uptake. The research provides valuable insights into the complexation mechanism and cellular uptake of dopamine-loaded DNA tetrahedral nanostructures, paving the way for further advancements in nanomedicine for Parkinson's disease and other neurological disorders.

2.
Nanoscale Adv ; 6(15): 3714-3732, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39050960

RESUMEN

DNA nanostructures have surfaced as intriguing entities with vast potential in biomedicine, notably in the drug delivery area. Tetrahedral DNA nanostructures (TDNs) have received worldwide attention from among an array of different DNA nanostructures due to their extraordinary stability, great biocompatibility, and ease of functionalization. TDNs could be readily synthesized, making them attractive carriers for chemotherapeutic medicines, nucleic acid therapeutics, and imaging probes. Their varied uses encompass medication delivery, molecular diagnostics, biological imaging, and theranostics. This review extensively highlights the mechanisms of functional modification of TDNs and their applications in cancer therapy. Additionally, it discusses critical concerns and unanswered problems that require attention to increase the future application of TDNs in developing cancer treatment.

3.
Gels ; 10(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057463

RESUMEN

Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.

4.
ACS Appl Bio Mater ; 7(6): 3915-3931, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38836645

RESUMEN

One of the crucial requirements of quantum dots for biological applications is their surface modification for very specific and enhanced biological recognition and uptake. Toward this end, we present the green synthesis of bright, red-emitting carbon quantum dots derived from mango leaf extract (mQDs). These mQDs are conjugated electrostatically with dopamine to form mQDs-dopamine (mQDs:DOPA) bioconjugates. Bright-red fluorescence of mQDs was used for bioimaging and uptake in cancerous and noncancerous cell lines, tissues, and in vivo models like zebrafish. mQDs exhibited the highest uptake in brain tissue compared to the heart, kidney, and liver. mQD:DOPA conjugates killed breast cancer cells and increased uptake in epithelial RPE-1 cells and zebrafish. Additionally, mQDs:DOPA promoted neuronal differentiation of SH-SY5Y cells to differentiated neurons. Both mQDs and mQDs:DOPA exhibited the potential for higher collective cell migrations, implicating their future potential as next-generation tools for advanced biological and biomedical applications.


Asunto(s)
Carbono , Diferenciación Celular , Dopamina , Puntos Cuánticos , Pez Cebra , Puntos Cuánticos/química , Humanos , Carbono/química , Carbono/farmacología , Dopamina/metabolismo , Dopamina/química , Animales , Diferenciación Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Tamaño de la Partícula , Ensayo de Materiales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Imagen Óptica , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
5.
J Phys Chem B ; 128(25): 6151-6166, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38845485

RESUMEN

This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.


Asunto(s)
Micelas , Poloxámero , Polietilenglicoles , Poloxámero/química , Polietilenglicoles/química , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Glicoles de Propileno/química , Viscosidad , Simulación de Dinámica Molecular
6.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38445557

RESUMEN

Multiple endocytic processes operate in cells in tandem to uptake multiple cargoes involved in diverse cellular functions, including cell adhesion and migration. The best-studied clathrin-mediated endocytosis (CME) involves the formation of a well-defined cytoplasmic clathrin coat to facilitate cargo uptake. According to the glycolipid-lectin (GL-Lect) hypothesis, galectin-3 (Gal3) binds to glycosylated membrane receptors and glycosphingolipids (GSLs) to drive membrane bending and tubular membrane invaginations that undergo scission to form a morphologically distinct class of uptake structures, termed clathrin-independent carriers (CLICs). Which components from cytoskeletal machinery are involved in the scission of CLICs remains to be explored. In this study, we propose that dynein is recruited onto Gal3-induced tubular endocytic pits and provides the pulling force for friction-driven scission. The uptake of Gal3 and its cargoes (CD98/CD147) is significantly dependent on dynein activity, whereas only transferrin (CME marker) is slightly affected upon dynein inhibition. Our study reveals that Gal3 and Gal3-dependent (CD98 and CD147) clathrin-independent cargoes require dynein for the clathrin-independent endocytosis.


Asunto(s)
Endocitosis , Galectina 3 , Galectina 3/genética , Endocitosis/genética , Transporte Biológico , Clatrina , Dineínas
7.
Phys Chem Chem Phys ; 26(7): 6372-6385, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315058

RESUMEN

Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and Na2SO4), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants (viz. anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (C12PS)) on these BCPs is examined to observe their influence on micellization behaviour. The presence of salts and polyols displayed interesting phase behaviour, i.e., the cloud point (CP) was decreased, the water structure was affected and the micelles were dehydrated by expelling water molecules, and thus they were likely to promote micelle formation/growth. In contrast, ionic surfactants in small amounts interacted with the BCPs and showed an increase in CPs thereby forming mixed micelles with increasing charges and decreasing micellar sizes, finally transforming to small surfactant-rich mixed micelles. Molecular interactions such as electrostatic and hydrogen bonding involved within the examined entities are put forth employing a computational simulation approach using the Gaussian 09 window for calculation along with the GaussView 5.0.9 programming software using the (DFT)/B3LYP method and 3-21G basis set. The hydrodynamic diameter (Dh) of the micelles is examined using dynamic light scattering (DLS), while the various micellar parameters inferring the shape/geometry are obtained using small-angle neutron scattering (SANS) by the best fitting of the structure factors. It is observed that 10 w/v% T904 remains as spherical micelles with some micellar growth under physiological conditions (37 °C), while 10 w/v% T90R4 remains as unimers and forms spherical micelles in the presence of additives at 37 °C. Furthermore, the additive-induced micellar systems are tested as developing nanovehicles for anticancer (curcumin, Cur) drug solubilization using UV-vis spectroscopy, which shows a prominent increase in absorbance with enhanced solubilization capacity. Additionally, the cytotoxic effect of Cur loaded on the BCP micelles in HeLa cells is studied through confocal microscopy by capturing fluorescence images that depict HeLa cell growth inhibition under the influence of additive-induced micellar systems.

8.
ACS Omega ; 9(1): 1196-1205, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222585

RESUMEN

Sonodynamic therapy (SDT) is a promising alternative to photodynamic therapy for achieving site-specific cytotoxic therapy. Porphyrin derivative molecules have been reported extensively in photodynamic therapy. We have previously shown that the glycosylation of porphyrin-based sonosensitizers can enhance their cellular uptake. However, the sonodynamic potential of these water-soluble glycosylated porphyrins has not been investigated. In this study, we characterized the sonodynamic response of two water-soluble glycosylated porphyrin derivatives. Ultrasound (US) exposure was performed (1 MHz frequency, intensities of 0.05-1.1 W/cm2) for 0-3 min in continuous mode. Reactive oxygen species (ROS) generation was quantified via ultraviolet-visible (UV-vis) spectrophotometry. MTT assay was used to quantify cytotoxicity caused by sonodynamic effects from these derivatives in the human mammary carcinoma (SUM-159) cell line in vitro. ROS generation from the porphyrin derivatives was demonstrated at a concentration of 15 µM. No significant cytotoxic effects were observed with the sonosensitizer alone or US exposure alone over the tested range of intensities and duration. The free base porphyrin derivative caused 60-70% cell death, whereas the zinc-porphyrin derivative with Zn metal conjugation caused nearly 50% cytotoxicity when exposed at 0.6 W/cm2 intensity for 3 min. These studies demonstrate the potential of anticancer SDT with soluble glycosylated porphyrins.

9.
Chembiochem ; 24(21): e202300506, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37677117

RESUMEN

Hypoxia, a decrease in cellular or tissue level oxygen content, is characteristic of most tumors and has been shown to drive cancer progression by altering multiple subcellular processes. We hypothesized that the cancer cells in a hypoxic environment might have slower proliferation rates and increased invasion and migration rates with altered endocytosis compared to the cancer cells in the periphery of the tumor mass that experience normoxic conditions. We induced cellular hypoxia by exposing cells to cobalt chloride, a chemical hypoxic mimicking agent. This study measured the effect of hypoxia on cell proliferation, migration, and invasion. Uptake of fluorescently labeled transferrin, galectin3, and dextran that undergo endocytosis through major endocytic pathways (Clathrin-mediated pathway (CME), Clathrin-independent pathway (CIE), Fluid phase endocytosis (FPE)) were analyzed during hypoxia. Also, the organelle changes associated with hypoxia were studied with organelle trackers. We found that the proliferation rate decreased, and the migration and invasion rate increased in cancer cells in hypoxic conditions compared to normoxic cancer cells. A short hypoxic exposure increased galectin3 uptake in hypoxic cancer cells, but a prolonged hypoxic exposure decreased clathrin-independent endocytic uptake of galectin 3. Subcellular organelles, such as mitochondria, increased to withstand the hypoxic stress, while other organelles, such as Endoplasmic reticulum (ER), were significantly decreased. These data suggest that hypoxia modulates cellular endocytic pathways with reduced proliferation and enhanced cell migration and invasion.


Asunto(s)
Hipoxia , Mitocondrias , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Movimiento Celular , Hipoxia de la Célula , Proliferación Celular , Mitocondrias/metabolismo , Clatrina/metabolismo , Clatrina/farmacología
10.
J Inorg Biochem ; 249: 112384, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776828

RESUMEN

Novel zinc porphyrins (trans-A2B2 and A3B type) are reported containing pharmacophoric groups derived from Sorafenib at the meso-positions. The pharmacophoric and bioisosteric modification of Sorafenib was done with 2-methyl-4-nitro-N-phenylaniline. The in-vitro photo-cytotoxicity studies of zinc porphyrins on HeLa cells revealed excellent PDT based autophagy inhibition of cancer cells, with IC50 values between 6.2 to 15.4 µM. The trans-A2B2 type zinc porphyrin with two bioisosteric groups gave better cytotoxicity than A3B type. Molecular docking studies revealed excellent binding with mTOR protein kinase of the designed porphyrins. The confocal studies indicated significant ER localization of trans-A2B2 type zinc porphyrin in HeLa cells along with ROS generation. trans-A2B2 type zinc porphyrin induced ER stress in cancer cells, thereby causing elevation of Ca+2 ions in cytoplasm, which led to cancer cell death via autophagy pathway. The studies suggested that trans-A2B2 and A3B type zinc porphyrins can be developed as theranostic agents for anti-cancer applications.


Asunto(s)
Fotoquimioterapia , Porfirinas , Humanos , Sorafenib/farmacología , Células HeLa , Simulación del Acoplamiento Molecular , Medicina de Precisión , Porfirinas/química , Zinc/química , Fármacos Fotosensibilizantes/farmacología
11.
ACS Appl Bio Mater ; 6(7): 2886-2897, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37379246

RESUMEN

The versatile nature of macrophages and their ability to switch between various activation states plays a pivotal role in both promoting and inhibiting inflammatory processes. In pathological inflammatory conditions, classically activated M1 macrophages are often associated with initiating and maintaining inflammation, while alternatively activated M2 macrophages are linked to the resolution of chronic inflammation. Achieving a favorable equilibrium between M1 and M2 macrophages is crucial for mitigating inflammatory environments in pathological conditions. Polyphenols are known to have strong inherent antioxidative capabilities, and curcumin has been found to reduce macrophage inflammatory reactions. However, its therapeutic efficacy is compromised due to its poor bioavailability. The present study aims to harness the properties of curcumin by loading it in nanoliposomes and enhancing the M1-to-M2 macrophage polarization. A stable liposome formulation was achieved at 122.1 ± 0.08 nm, and a sustained kinetic release of curcumin was observed within 24 h. The nanoliposomes were further characterized using TEM, FTIR, and XRD, and the morphological changes in macrophage cells, RAW264.7, were observed in SEM, indicating a distinct M2-type phenotype after the treatment with liposomal curcumin. ROS may partially control macrophage polarization and be observed to decrease after treatment with liposomal curcumin. The nanoliposomes were able to successfully internalize in the macrophage cells, and an enhanced expression of ARG-1 and CD206 with a decrease in iNOS, CD80, and CD86 levels suggested the polarization of LPS-activated macrophages toward the M2 phenotype. Also, liposomal curcumin treatment dose-dependently inhibited TNF-α, IL-2, IFN-γ, and IL-17A at secretory levels and simultaneously increased the levels of cytokines like IL-4, IL-6, and IL-10.


Asunto(s)
Curcumina , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Fenotipo
12.
Chem Asian J ; 18(9): e202300044, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36945757

RESUMEN

We report the photophysical properties, self-assembly and biological evaluation of an isothiazolanthrone-based dye, 7-amino-6H-anthra[9,1-cd]isothiazol-6-one (AAT), which reveals anticancer properties and can be potentially used as dye for monitoring cell viability. The solvent-dependent photophysical studies suggest that the emission of AAT is sensitive to environment polarity due to which interesting changes in the colored emission may be observed owing to the charge transfer (CT) processes. AAT also self-assembles to tree-like branched morphologies and produce, a greenish emission inside the cells when imaged after short interval (15 mins) of incubation while a red fluorescence could be noted after 24 h. Interestingly, AAT also produce differential emission inside mouse normal cells as compared to its cancer cell lines since it possess anticancer activity. The experimental observations were also validated theoretically via computational modeling.


Asunto(s)
Espectrometría de Fluorescencia , Animales , Ratones , Espectrometría de Fluorescencia/métodos , Supervivencia Celular , Línea Celular , Solventes
13.
Chembiochem ; 24(5): e202200580, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468492

RESUMEN

The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Péptidos/química , Nanotecnología
14.
Nanoscale ; 15(3): 1154-1171, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36413203

RESUMEN

One of the biggest challenges limiting the biological applications of fluorescent carbon-based nanoparticles is their capacity to emit in the red region of the spectrum and simultaneously maintaining the smaller size. These two parameters always go in inverse proportion, thus lagging their applications in biological imaging. Endocytic pathways play important roles in regulating major cellular functions such as cellular differentiation. The Spatio-temporal dynamics of endocytic pathways adopted by various ligands (including nanoparticles) over longer durations in cellular differentiation remain unstudied. Here we have used red-emitting fluorescent carbon nanoparticles to study the endocytic pathways in neuronal cells at different stages of differentiation. These small-sized, bright, red-emitting carbon nanoparticles (CNPs) can be internalized by live cells and imaged for extended periods, thus capturing the Spatio-temporal dynamics of endocytic pathways in model SH-SY5Y derived neuroblastoma neurons. We find that these nanoparticles are preferably taken up via clathrin-mediated endocytosis and follow the classical recycling pathways at all the stages of neuronal differentiation. These nanoparticles hold immense potential for their size, composition, surface and fluorescence tunability, thus maximizing their applications in spatio-temporally tracking multiple cellular pathways in cells and tissues simultaneously.


Asunto(s)
Nanopartículas , Neuroblastoma , Humanos , Línea Celular Tumoral , Endocitosis , Neuronas/metabolismo , Carbono
15.
Phys Chem Chem Phys ; 24(32): 19552-19563, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35938929

RESUMEN

DNA mediated directed self assembly of gold nanoparticles (AuNPs) has garnered immense interest due to its ability to precisely control supramolecular assemblies. Most experimental works have relied on utilizing the complementary interactions between the DNA strands to drive the self assembly of AuNPs grafted with DNA strands. In the present work, we have leveraged DNA-peptide interactions to tune the self assembly and stimuli responsive behavior of AuNPs grafted with single stranded DNA (ssDNA) and poly-L-lysine (PLL) chains. Our findings show that the electrostatic interactions between the negatively charged ssDNA grafts and positively charged PLL grafts, drive the self assembly of AuNPs of different sizes into 3D nanostructures. The transmission electron micrographs confirm that the smaller AuNPs grafted with PLL chains form a corona around the large AuNPs grafted with ssDNA like the petals around a flowery core to drive aggregation of large AuNPs. When the grafting of ssDNA and PLL on the different sized AuNPs is swapped, aggregates of large AuNPs mediated by the ssDNA grafts on the smaller AuNPs were observed. The presence of excess ssDNA/PLL chains in solutions affected both the morphology and the mechanism of aggregate formation. Coarse-grain molecular dynamics simulations qualitatively match the experimental findings and provided a scientific rationale to the above findings highlighting the role of chain entropy, molecular connectivity, and charge correlations on the self assembly of AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , ADN/química , ADN de Cadena Simple , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Poli A
16.
ACS Appl Bio Mater ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960932

RESUMEN

Porphyrin is known to enable the photodynamic effect during cancer drug delivery and molecular imaging. However, its hydrophobicity and tendency to aggregate in an aqueous medium create a significant hurdle for its use as an anticancer drug. Loading porphyrin onto biocompatible delivery vehicles can enhance its efficacy. This can be achieved by using gas-filled microbubbles that can be administered intravenously. This study aimed at developing near-infrared (NIR)-active porphyrin-loaded lipid microbubbles with anticancer activity enhanced by sonodynamic and photodynamic effects. The porphyrin-loaded microbubbles were studied for their cell toxicity, cellular uptake of porphyrin, and effect on cellular three-dimensional (3D) invasion of breast cancer cells (MDA-MB-231) in cellulo. Toxicity studies in zebrafish larvae (Danio rerio) in the presence and absence of photodynamic and sonodynamic therapy were also conducted. The results suggest that with a higher concentration of porphyrin loaded on microbubbles, the porphyrin-loaded microbubbles display a higher therapeutic effect facilitated by photodynamic and sonodynamic therapy, which results in enhanced cellular uptake and cellular toxicity. A lower concentration of loaded porphyrin microbubbles exhibits high cellular viability and good fluorescence intensity in the NIR region, which can be exploited for bioimaging applications.

17.
Nanoscale ; 14(24): 8611-8620, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35687044

RESUMEN

Designing programmable biomaterials that could act as extracellular matrices and permit functionalization is a current need for tissue engineering advancement. DNA based hydrogels are gaining significant attention owing to their self-assembling properties, biocompatibility, chemical robustness and low batch to batch variability. The real potential of DNA hydrogels in the biomedical domain remains to be explored. In this work, a DNA hydrogel was coated on a glass surface and coupled to a synthetic IKVAV peptide by a chemical crosslinker. We observe enhanced neuronal differentiation, prolonged neurite length, dynamic movement of microtubules and cytoskeleton, and altered endocytic mechanisms in neuroblastoma-based stem cells for the peptide modified DNA hydrogel compared to the unmodified DNA hydrogel and controls. We anticipate that a peptide-modified DNA hydrogel could emerge as a promising scaffold coating material to develop nerve tissue conduits in the future for application in neuroscience and neuroregeneration.


Asunto(s)
Células-Madre Neurales , Neuroblastoma , Diferenciación Celular , ADN/metabolismo , Humanos , Hidrogeles/química , Péptidos/química
18.
Traffic ; 23(7): 391-410, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35604355

RESUMEN

Alpha-synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.


Asunto(s)
Neuroblastoma , Sinucleinopatías , alfa-Sinucleína/metabolismo , Actinas , Clatrina/metabolismo , Humanos , Neuronas/metabolismo , alfa-Sinucleína/química
19.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35311906

RESUMEN

Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.


Asunto(s)
Dineínas , Cinesinas , Dineínas/metabolismo , Endocitosis/fisiología , Microtúbulos/metabolismo , Cadenas Pesadas de Miosina , Miosinas/metabolismo
20.
Chemistry ; 28(30): e202200203, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35302252

RESUMEN

Endoplasmic reticulum (ER) has emerged as one of the interesting sub-cellular organelles due to its role in myriads of biological phenomena. Subsequently, visualization of the structure-function and dynamics of ER remained a major challenge to understand its involvement in different diseased states including cancer. To illuminate the ER, herein we have designed and synthesized γ-resorcyclic acid-based small molecules, which showed remarkable aggregation-induced emission (AIE) property in water. This AIE property was originated from the dual intramolecular H-bonding leading to the self-assembled 2D aggregation confirmed by pH- and temperature-dependent fluorescence quenching studies as well as scanning electron microscopy. These small molecules illuminated the sub-cellular ER in HeLa cervical cancer cells as well as non-cancerous RPE-1 human retinal epithelial cells within 1 h. These novel small molecules have the potential to light up ER chemical biology in diseased states.


Asunto(s)
Retículo Endoplásmico , Fluorescencia , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA