Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724836

RESUMEN

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Apoptosis , Portadores de Fármacos , Transición Epitelial-Mesenquimal , Nanopartículas , Neoplasias de la Próstata , Piranos , Ratas Wistar , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Animales , Piranos/farmacología , Piranos/administración & dosificación , Apoptosis/efectos de los fármacos , Humanos , Ratas , Línea Celular Tumoral , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Movimiento Celular/efectos de los fármacos , Células PC-3 , Sistemas de Liberación de Medicamentos/métodos , Policétidos Poliéteres
2.
Artículo en Inglés | MEDLINE | ID: mdl-38199059

RESUMEN

Arbortristoside-A (Arbor-A) is a naturally occurring iridoid glycoside and herbal-based lead molecule with proven medicinal potential. Aiming at the development of an efficient analytical tool for the quantification of Arbor-A in pharmaceutical dosage forms, in the presented work, we developed an economical, fast, and sensitive RP-HPLC-UV method and validated the procedure as per the ICH guidelines, Q2(R1). The chromatographic separation was accomplished under the optimised experimental conditions using an HPLC system with an LC-2010 autosampler, a PDA detector, and a Phenomenex C18 column with the mobile phase composed of a 70:30 (v/v) water-acetonitrile mixture eluting isocratically at a flow rate of 1 mL/min at ambient temperature, and UV detection at 310 nm. Arbor-A showed a sharp peak at the retention time of 5.60 min and exhibited linearity (R2 = 0.9988) with LOD and LOQ of 0.50 µg/mL and 1.50 µg/mL, respectively. The accuracy of the method was 98.33-101.36 % with acceptable intra-day and inter-day precisions as well as robustness (<2% RSD). To ratify the applicability of the presented approach in emerging pharmaceuticals, a nanoformulation loaded with Arbor-A was designed and analysed utilising the provided methodology. The method has also enabled to determine the degradation kinetics of Arbor-A under stress conditions, etcetera, employing forced degradation and short term stability studies.


Asunto(s)
Cromatografía Líquida de Alta Presión , Glucósidos Iridoides , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Estabilidad de Medicamentos , Reproducibilidad de los Resultados , Preparaciones Farmacéuticas
3.
J Pharm Biomed Anal ; 239: 115920, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113826

RESUMEN

Unforeseen surfacing of microbial keratitis (MKT) over the years has led to a requisite for promising treatment strategy involving combination of antifungal and antibacterial agents. Subsequently, symptoms associated with MKT including inflammation and watery eyes require treatment with anti-inflammatory agents. Thus, a requirement of functional clinical treatment strategy involving combination of anti-inflammatory corticosteroids (Betamethasone) with antifungal polyene (Amphotericin B, AmB) and antibacterials macrolide (Azithromycin, AZT) and aminoglycoside (Neomycin, NEO). In the ensuing pursuit, a sensitive and fast simultaneous LC-MS/MS method of four drastically different analytes in rabbit tear fluid and cornea was developed and validated as per US-FDA guidelines. The gradient LC set-up was used with C18 column and flow rate of 0.55 mL/min along with short run time of 7 min. The calibration curves showed good linearity over the concentration range of 0.07-300 ng/mL, 1.00-400 ng/mL, 3.00-600 ng/mL and 8.00-900 ng/mL for AZT, AmB, NEO and BEM respectively. The bioanalytical method requires only 10 µL of ocular sample and analytes were extracted with fast protein precipitation with acidic methanol. Finally, the developed method was validated for selectivity, linearity (r2 > 0.99), precision, accuracy, matrix effects, and stability. PK-PD indices and dosing frequency was predicted using Phoenix WinNonlin Software, based on single dose ocular pharmacokinetics and MIC values of AmB, AZT and NEO. According to the PK-PD simulation, S. aureus and E. coli required 6 and 12 instillations of AZT per 24 h, respectively whereas 12 instillation of NEO requires per 24 h for S. aureus. The result suggests that to minimize antimicrobial resistance; drug, dose and dosing schedule depend upon the pathogen as well as the strain.


Asunto(s)
Antifúngicos , Queratitis , Animales , Conejos , Antifúngicos/farmacocinética , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Córnea , Antiinflamatorios , Queratitis/tratamiento farmacológico , Reproducibilidad de los Resultados
4.
Xenobiotica ; 53(6-7): 484-497, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787761

RESUMEN

1. The current investigation was to develop and validate the LC-MS/MS method in order to analyse the various pharmacokinetic parameters of S019-0385. A sensitive, selective, and robust LC-MS/MS approach was established and validated for measuring S019-0385 in female mice plasma and tissue, using optimal multiple reaction monitoring (MRM) transition m/z 488.25/329.12 on positive mode. On a Waters Symmetry Shield C18 column, the analyte was separated using acetonitrile and deionised water with formic acid within 6 min at 0.7 mL/min. Linearity (R2 ≥ 0.99) was observed across 0.195-100 ng/mL concentration range using linear least-squares regression.2. Blood-to-plasma ratio and plasma protein drug binding (%) in mice and human was assessed and found to be less than 1 and >83%, respectively. Absolute bioavailability (%F) of S019-0385 in female Swiss mice was exhibited to be 6.90%. Percent dose excreted S019-0385 in unchanged form through urine and faecal was found to be less than 2% and 0.5%, respectively.3. Following oral administration at 5 mg/kg, the concentration of S019-0385 in tissue distribution was found to be in the order of C small intestine > C bone > C lung > C spleen > C kidney > C liver > C heart > C brain.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Ratones , Femenino , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular , Disponibilidad Biológica , Heces , Reproducibilidad de los Resultados
5.
Rapid Commun Mass Spectrom ; 37(20): e9615, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37706431

RESUMEN

RATIONALE: Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS: In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS: HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS: Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.


Asunto(s)
COVID-19 , Hesperidina , Humanos , Cromatografía Liquida , Tratamiento Farmacológico de COVID-19 , Espectrometría de Masas en Tándem
6.
J Pharm Biomed Anal ; 234: 115484, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37453143

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrine disorder that causes reproductive hormones imbalance, missed periods, infertility and distributed steroidogenesis. Reportedly, during PCOS, the endogenous levels of P4 (Progesterone), 17OHP4 (17-α hydroxy progesterone), and T4 (Testosterone) were significantly altered. Thus, quantification of steroid biomarkers involved in the steroidogenesis pathway of PCOS, such as P4, 17OHP4, and T4, holds significant importance. One important drawback of current methods is steroid metabolome traceability. Without adequate traceability, the findings of these techniques will be less reliable for identifying P4, 17OHP4, and T4. These methods also need a high sample size, especially for the most important biomarker that initiates steroidogenesis. To address these challenges, we require a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for steroid biomarker analysis. Herein the present work, using validated LC-MS/MS, PCOS biomarkers were measured and compared between normal control rats and PCOS-induced rats before and after analyte administration. The experiment utilized an isocratic separation method employing an analytical C18 column. The mobile phase consisted of acetonitrile (ACN) and aqueous 0.1% formic acid (FA) in a ratio of 90:10 (v/v). The plasma samples were processed with protein precipitation (PPT) followed by the liquid-liquid extraction (LLE) method. The lower limit of quantification (LLOQ) was 0.5 ng/mL in plasma. According to USFDA criteria, the method's systematic validation took into account linearity (r2 > 0.99), accuracy and precision of intra- and inter-batch measurements, stability, biomarker recovery (60-85%) and matrix effect (<± 15%), all of which were determined to be within range ( ± 15%). The pharmacokinetic data showed that, as compared to normal rats, PCOS-induced animals had significantly higher Cmax values for 17OHP4 and T4 (∼2 fold), while lower Cmax values for P4 (∼2 fold). The present work is novel and provides scientific information to explore systematic processes involved in steroidogenesis and boost clinical applicability for PCOS therapy.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Animales , Ratas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Progesterona , Esteroides , Testosterona , Biomarcadores , Reproducibilidad de los Resultados
7.
Bioanalysis ; 15(13): 711-725, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37354099

RESUMEN

Aim: To study the preclinical pharmacokinetics of 4-hydroxy isoleucine (4-HIL) targeted for polycystic ovary syndrome. Methodology: The quantitative bioanalysis of 4-HIL in different biological matrices in female Sprage-Dawley rats using LC-MS/MS. Results: At 50 mg/kg, 4-HIL had 56.8% absolute oral bioavailability. It was quickly absorbed and distributed in various tissues in order of small intestine > kidney > ovary > spleen > lung > liver > heart > brain after oral administration. Moreover, 11.07% of 4-HIL was recovered in urine and feces within 72 h. Conclusion: 4-HIL levels in vital organs were found safe, as per tissue distribution results. Hence, 4-HIL could be used as promising therapeutics for management of polycystic ovary syndrome.


Asunto(s)
Isoleucina , Síndrome del Ovario Poliquístico , Ratas , Femenino , Animales , Humanos , Cromatografía Liquida , Ratas Sprague-Dawley , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos , Administración Oral
8.
Biomed Chromatogr ; 37(5): e5600, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36760100

RESUMEN

Fenugreek seeds are used in numerous marketed herbal formulations with therapeutic benefits. Some of its bioactive components such as 4-hydroxyisoleucine, trigonelline, raffinose, and pinitol are reported to possess potential therapeutic activities, such as antibacterial, antidiabetic, stomach stimulant, and anti-invasive, against hyperandrogenism and other allied diseases, including polycystic ovary syndrome. A fully validated, selective, and sensitive bioanalytical method for the simultaneous rapid quantification of the aforementioned bioactive components has been developed using hyphenated liquid chromatography electrospray tandem mass spectrometry. The analytes were separated within 5 min using gradient elution in a C18 column at a flow rate of 0.5 ml/min. Plasma protein precipitation technique was employed to isolate the analytes from the samples. Oral pharmacokinetic profile of the four bioactive components in Sprague-Dawley rats was further evaluated using noncompartmental analysis using Phoenix WinNonlin software.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Femenino , Ratas Sprague-Dawley , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos
9.
Eur J Med Chem ; 244: 114813, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36219902

RESUMEN

In search of novel osteogenic entities, a series of twenty-seven quinazolinone-benzopyran-indole hybrids were designed and synthesized using molecular hybridization approach. All the compounds were scrutinized for their osteogenic potential, primarily based on alkaline phosphatase assay as one of the major anabolic markers. From the primary screening, four osteogenic compounds were sorted from the series and were found nontoxic to the osteoblasts. Further, increased osteoblast differentiation and osteogenic mRNA upregulations suggest compound 47 as the most potent osteoanabolic agent. Immunoblot and ELISA analysis demonstrated that compound 47 promotes osteogenesis via RUNX2 and BMP2 mediated non-canonical p38 pathway. In vivo studies in BALB/c mice inferred that compound 47 stimulates bone anabolism as evident from histological and gene expression studies at 5 mg. kg-1. day-1 dose. Furthermore, structural activity relationship (SAR) and pharmacokinetic studies suggest compound 47 as a BMP2 upregulator and a potential bone anabolic lead for combating future bone metabolic disorders.


Asunto(s)
Benzopiranos , Osteogénesis , Ratones , Animales , Regulación hacia Arriba , Benzopiranos/metabolismo , Quinazolinonas/farmacología , Quinazolinonas/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Osteoblastos/metabolismo , Indoles/metabolismo , Diferenciación Celular
10.
Xenobiotica ; 52(5): 476-487, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35819259

RESUMEN

S-011-1559 is a tyrosine-derived novel benzoxazine CDRI molecule targeted to the oestrogen-related receptor (ER-α/ß) modulator in breast cancer. To explore the pharmacokinetics of S-011-1559, a selective and sensitive bioanalytical method using LC-MS/MS was established and validated in different biological matrices of female rats.Blood-to-plasma ratio and plasma protein binding (PPB) of S-011-1559 were found to be <1 and >97% in both rats and humans, respectively. The human serum albumin (HSA) and alpha-1-acid glycoprotein (AAG) binding was found in the range of > 68 to 45% and >14% respectively. Half-life and intrinsic clearance by microsomal stability study were found to be 28.83 min and 0.05 mL/min/mg in rats, 78.35 min and 0.036 mL/min/mg in humans, respectively. The IC50 value of S-011-1559 against CYP isoforms was revealed to moderately inhibit CYP2D6 by a reversible non-competitive mechanism.Tissue distribution of S-011-1559 on single intravenous injection at 2 mg/kg was found in the order of C lungs > C mammary gland > C spleen > C heart > C kidney > C liver > C brain.The data from the present study provides crucial information about S-011-1559 for further development as a novel potential drug candidate in modulating ER-α/ß receptors of lung and breast neoplasia.


Asunto(s)
Neoplasias de la Mama , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Femenino , Humanos , Microsomas Hepáticos , Ratas , Distribución Tisular
11.
J Med Chem ; 64(21): 16293-16316, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34726897

RESUMEN

In continuing efforts of improving benzoxazepine derivatives as an anti-breast cancer agent, a new chemical entity, benzoxazine, was designed from scaffold morphing. Structure-activity relationship studies revealed that H, -OMe, -CF3, and -F were well tolerated on R1 and R2 positions of ring A, and R2 as -CH2CH2N(CH2)4 (N-ethyl pyrrolidine) and -CH2CH2N(CH2)5 (N-ethyl piperidine) chains on ring D increased activities (Series B, Figure 3). 13d selected as a lead compound (IC50: 0.20 to 0.65 µM) induces apoptosis, cell cycle arrest, and loss of mitochondrial membrane potential in breast cancer cells. Compound 13d was formulated into 13d-f using cyclodextrin to improve its solubility for a pharmacokinetic, in vivo efficacy study. Both 13d and 13d-f regressed tumor growth at concentrations of 5 and 20 mg/kg better than tamoxifen without any mortality in a rat syngenic mammary tumor model. Collectively, our data suggest that tyrosine-derived novel benzoxazine 13d could be a potential lead for the treatment of breast cancer and hence deserve further in-depth studies.


Asunto(s)
Benzoxazinas/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Tirosina/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Experimentales/patología , Ratas
12.
Artif Cells Nanomed Biotechnol ; 46(sup3): S344-S358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282466

RESUMEN

Paclitaxel (PTX) in its commercial products exhibits adverse effects owing to excipients and also has poor oral bioavailability. Present work is directed towards development of tocopheryl polyethylene glycol succinate-assisted self-nanoemulsifying system (SEDDS) for oral delivery of PTX. Box-Behnken design of experiment was employed to optimize PTX-SEDDS and was characterized for droplet size (29.76 ± 2.64 nm), zeta potential (-21.46 ± 2.52 mV), PDI (0.177 ± 0.012), drug content (4.97 ± 0.98 mg), entrapment efficiency (98.33 ± 0.54%) and in vitro drug release (51.03 ± 2.23% PTX at 72 h). PTX-SEDDS exhibited IC50; 1.58 ± 0.12 µM and a 52.46-folds higher cell uptake in MDA-MB-231 cells along with cellular and nuclear morphology changes. Significantly higher G2M cell cycle arrest, apoptosis, mitochondrial membrane potential disruption and ROS production was exhibited by PTX-SEDDS in comparison to Taxol. Up-regulation of Bax, p21, cleaved-caspase 3, -caspase 9 and down-regulation of Bcl2 and survivin suggested apoptosis via intrinsic pathways. Pharmacokinetic study showed approximately 4-folds higher oral bioavailability of PTX-SEDDS than Taxol. Significant reduction in tumour volume and weight was observed in syngeneic mammary tumour in SD rats. Tumour histopathology and TUNEL assay showed apoptosis in tumour tissue. PTX-SEDDS caused low lung metastasis, and was safe and stable. Conclusively, PTX-SEDDS could be suitable option for oral delivery of PTX.


Asunto(s)
Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Neoplasias Mamarias Experimentales , Micelas , Paclitaxel , Vitamina E , Animales , Emulsiones , Femenino , Humanos , Isoinjertos , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Trasplante de Neoplasias , Paclitaxel/química , Paclitaxel/farmacología , Ratas , Ratas Sprague-Dawley , Vitamina E/química , Vitamina E/farmacología
13.
J Steroid Biochem Mol Biol ; 168: 110-117, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28232149

RESUMEN

16-Dehydropregnenolone (DHP) has been developed and patented as a promising antihyperlipidemic agent by CSIR-Central Drug Research Institute (CSIR-CDRI), India. Although DHP is implicated in controlling cholesterol homeostasis, the mechanism underlying its pharmacological effect in hyperlipidemic disease models is poorly understood. In the present study, we postulated that DHP lowers serum lipids through regulating the key hepatic genes accountable for cholesterol metabolism. The hypothesis was tested on golden Syrian hamsters fed with high-fat diet (HFD) following oral administration of DHP at a dose of 72mg/kg body weight for a period of one week. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total bile acids (TBA) in feces were measured. Real time comparative gene expression studies were performed for CYP7A1, LXRα and PPARα level in liver tissue of hamsters. The results revealed that the DHP profoundly decreased the levels of serum TC, TG, LDL-C and atherogenic index (AI), whilst elevated the HDL-C/TC ratio. Besides, DHP exhibited an anti-hyperlipidemic effect in the HFD induced hyperlipidemic hamsters by means of: (1) up-regulating the gene expression of CYP7A1 encoded cholesterol 7α-hydroxylase, that promotes the catabolism of cholesterol to bile acid; (2) inducing the gene expression of transcription factors LXRα and PPARα; (3) increasing the TBA excretion through feces. Collectively, the findings presented confer the hypolipidemic activity of DHP via up-regulation of hepatic CYP7A1 pathway that promotes cholesterol-to-bile acid conversion and bile acid excretion.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol/sangre , Hiperlipidemias/sangre , Receptores X del Hígado/metabolismo , PPAR alfa/metabolismo , Pregnenolona/análogos & derivados , Animales , Ácidos y Sales Biliares/química , LDL-Colesterol/sangre , Cricetinae , Heces , Células Hep G2 , Humanos , Masculino , Mesocricetus , Pregnenolona/farmacología , Factores de Tiempo , Triglicéridos/sangre , Regulación hacia Arriba
14.
J Med Chem ; 57(8): 3342-57, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24635539

RESUMEN

Antileishmanial activities of a library of synthetic chalcone analogues have been examined. Among them, five compounds (11, 14, 16, 17, 22, and 24) exhibited better activity than the marketed drug miltefosine in in vitro studies against the intracellular amastigotes form of Leishmania donovani. Three promising compounds, 16, 17, and 22, were tested in a L. donovani/hamster model. Oral administration of chalcone 16, at a concentration of 100 mg/kg of body weight per day for 5 consecutive days, resulted in >84% parasite inhibition at day 7 post-treatment and it retained the activity until day 28. The molecular and immunological studies revealed that compound 16 has a dual nature to act as a direct parasite killing agent and as a host immunostimulant. Pharmacokinetics and serum albumin binding studies also suggest that compound 16 has the potential to be a candidate for the treatment of the nonhealing form of leishmaniasis.


Asunto(s)
Antiprotozoarios/síntesis química , Chalconas/síntesis química , Leishmania donovani/efectos de los fármacos , Animales , Antiprotozoarios/farmacocinética , Antiprotozoarios/farmacología , Chalconas/farmacocinética , Chalconas/farmacología , Cricetinae , Citocinas/biosíntesis , Estabilidad de Medicamentos , Macrófagos/inmunología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mesocricetus , Óxido Nítrico/biosíntesis , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA