Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cells ; 13(19)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39404414

RESUMEN

The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFß)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFß-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFß signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Kisspeptinas , Cirrosis Hepática , Transducción de Señal , Factor de Crecimiento Transformador beta , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Kisspeptinas/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Masculino , Ratones , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proliferación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Movimiento Celular/efectos de los fármacos
2.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867022

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Dieta Occidental/efectos adversos , Estudios Retrospectivos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/etiología
3.
J Hepatol ; 81(2): 207-217, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38508241

RESUMEN

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS: To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS: Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS: These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.


Asunto(s)
Senescencia Celular , Células Estrelladas Hepáticas , Fenotipo , Células Estrelladas Hepáticas/metabolismo , Senescencia Celular/fisiología , Animales , Humanos , Ratones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/patología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL
4.
Sci Rep ; 12(1): 15661, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123383

RESUMEN

Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat). In human primary liver microtissues, FASN inhibiton (FASNi) decreased triglyceride (TG) content, consistent with direct anti-steatotic activity. In human hepatic stellate cells, FASNi reduced markers of fibrosis including collagen1α (COL1α1) and α-smooth muscle actin (αSMA). In CD4+ T cells exposed to NASH-related cytokines, FASNi decreased production of Th17 cells, and reduced IL-1ß release in LPS-stimulated PBMCs. In mice with diet induced NASH l, FASNi prevented development of hepatic steatosis and fibrosis, and reduced circulating IL-1ß. In mice with established diet-induced NASH, FASNi reduced NAFLD activity score, fibrosis score, ALT and TG levels. In the CCl4-induced FAT-NASH mouse model, FASN inhibition decreased hepatic fibrosis and fibrosis markers, and development of hepatocellular carcinoma (HCC) tumors by 85%. These results demonstrate that FASN inhibition attenuates inflammatory and fibrotic drivers of NASH by direct inhibition of immune and stellate cells, beyond decreasing fat accumulation in hepatocytes. FASN inhibition therefore provides an opportunity to target three key hallmarks of NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Actinas , Animales , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/prevención & control , Citocinas , Modelos Animales de Enfermedad , Acido Graso Sintasa Tipo I , Ácido Graso Sintasas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Nitrilos , Enfermedad del Hígado Graso no Alcohólico/patología , Piperidinas , Triazoles , Triglicéridos
5.
Sci Rep ; 11(1): 20827, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675338

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a rising health challenge, with no approved drugs. We used a computational drug repositioning strategy to uncover a novel therapy for NASH, identifying a GABA-B receptor agonist, AZD3355 (Lesogaberan) previously evaluated as a therapy for esophageal reflux. AZD3355's potential efficacy in NASH was tested in human stellate cells, human precision cut liver slices (hPCLS), and in vivo in a well-validated murine model of NASH. In human stellate cells AZD3355 significantly downregulated profibrotic gene and protein expression. Transcriptomic analysis of these responses identified key regulatory nodes impacted by AZD3355, including Myc, as well as MAP and ERK kinases. In PCLS, AZD3355 down-regulated collagen1α1, αSMA and TNF-α mRNAs as well as secreted collagen1α1. In vivo, the drug significantly improved histology, profibrogenic gene expression, and tumor development, which was comparable to activity of obeticholic acid in a robust mouse model of NASH, but awaits further testing to determine its relative efficacy in patients. These data identify a well-tolerated clinical stage asset as a novel candidate therapy for human NASH through its hepatoprotective, anti-inflammatory and antifibrotic mechanisms of action. The approach validates computational methods to identify novel therapies in NASH in uncovering new pathways of disease development that can be rapidly translated into clinical trials.


Asunto(s)
Reposicionamiento de Medicamentos , Agonistas de Receptores GABA-B/uso terapéutico , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ácidos Fosfínicos/uso terapéutico , Propilaminas/uso terapéutico , Adulto , Anciano , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Agonistas de Receptores GABA-B/farmacología , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Fosfínicos/farmacología , Propilaminas/farmacología
6.
PLoS One ; 16(1): e0244763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33395434

RESUMEN

BACKGROUND & AIM: Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease. METHODS: The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome. RESULTS: There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales. CONCLUSIONS: We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.


Asunto(s)
Disbiosis/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Bacterias , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Heces/microbiología , Fibrosis/complicaciones , Fibrosis/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Variación Genética/genética , Humanos , Inflamación/complicaciones , Cirrosis Hepática/patología , Neoplasias Hepáticas/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/microbiología
7.
Soft Robot ; 8(4): 397-415, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32758017

RESUMEN

Soft robotic systems are well suited for developing devices for biomedical applications. A bio-mimicking robotic soft esophagus (RoSE) is developed as an in vitro testing device of endoprosthetic stents for dysphagia management. Endoprosthetic stent placement is an immediate and cost-effective therapy for dysphagia caused by malignant esophageal strictures from esophageal cancer. However, later stage complications, such as stent migration, could weaken the swallow efficacy in the esophagus. The stent radial force (RF) on the esophageal wall is pivotal in avoiding stent migration. Due to limited randomized controlled trials in patients, the stent design and stenting guidelines are still unconstructive. To address the knowledge deficit, we have investigated the capabilities of the RoSE by implanting two stents (stent A and B) of different radial stiffness characteristics, to measure the stent RF and its effect on the stent migration. Also, endoscopic manometry on the RoSE under peristalsis has been performed to study the impact of stenting and stent dysfunctionality on the intrabolus pressure signatures (IBPSs) in the RoSE, and further its effects on the swallowing efficacy. Each implanted stent in the RoSE underwent a set of experiments with various test variables (peristalsis velocity and wavelength, and bolus concentrations). In this study, the conducted tests are representative of the application of RoSE to perform a wide-ranging assessment of the stent behavior. The usability of RoSE has been discussed by comparing the results of stent A and B, for various combinations of the test variables mentioned earlier. The results have demonstrated that the stiffer stent B has a higher RF, whereas stent A maintained its RF at a low profile due to its lesser stiffness. The results have also implicated that a high RF is necessary to minimize the stent migration under prolonged peristaltic contractions in the RoSE. For the manometry experiments, stent A slightly increased the IBPS, but the stiffer stent B significantly decreased the IBPS, especially for the higher concentration boluses. It was found that if a stiffer stent buckles, it can reduce the swallow efficacy and cause recurrent dysphagia. Therefore, RoSE is an innovative soft robotic platform that is capable of testing various endoprosthetic stents, thereby offering a solution to many existing clinical challenges in the area of stent testing.


Asunto(s)
Trastornos de Deglución , Procedimientos Quirúrgicos Robotizados , Robótica , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos , Stents/efectos adversos
8.
Hematology ; 13(6): 361-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19055866

RESUMEN

The authors have studied the interactions of intact hemoglobin mixtures of HbE and HbA, with the major erythroid membrane skeletal protein, spectrin and tailor-made phospholipids membranes containing aminophospholipids to understand the role of spectrin and phospholipids of erythrocytes in the overall pathophysiology of the hemoglobin disorders. Hemoglobin mixtures were isolated and purified from the peripheral blood samples of HbE carriers and different HbEbeta thalassemia patients, taken for diagnosis. Spectrin binding was studied by fluorescence and oxidative crosslinking, by SDS-PAGE. Membrane perturbation experiments were carried out to study the leakage of the self-quenching fluorophore, carboxyfluorescein, entrapped in the phospholipid vesicles. Hemoglobin mixtures with elevated levels of HbE showed stronger interactions with spectrin reflected in the decrease in binding dissociation constant from 17 to 5 muM upon increase in HbE% from about 30 to 90% in the hemolysates. The yield of the spectrin crosslinked complexes of such hemoglobin mixtures also increased with increase in HbE levels. Presence of ATP/Mg and DPG were found to decrease the overall yield of such complexes and the binding affinity of hemoglobins to spectrin. HbE rich hemolysates also induced greater leakage of entrapped carboxyfluorescein (CF) from phospholipid membranes containing aminophospholipids. Results from this study indicate the roles of skeletal proteins and aminophospholipids, particularly under oxidative stress conditions to be important in the premature destruction of erythrocytes in hemoglobin disorders, e.g. HbEbeta-thalassaemia.


Asunto(s)
Hemoglobina E/metabolismo , Fosfolípidos/metabolismo , Espectrina/metabolismo , Talasemia beta/sangre , 2,3-Difosfoglicerato , Adenosina Trifosfato , Reactivos de Enlaces Cruzados , Humanos , Membrana Dobles de Lípidos , Estrés Oxidativo , Unión Proteica
9.
Virology ; 380(2): 276-84, 2008 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-18757072

RESUMEN

Serine/threonine phosphorylation of the nonstructural protein 5 (NS5) is conserved feature of flaviviruses, but the kinase(s) responsible and function(s) remain unknown. Mass spectrometry was used to characterize phosphorylated residues of yellow fever virus (YFV) NS5 expressed in mammalian cells. Multiple different phosphopeptides were detected. Mutational and additional mass spectrometry data implicated serine 56 (S56), a conserved residue near the active site in the NS5 methyltransferase domain, as one of the phosphorylation sites. Methyltransferase activity is required to form a methylated RNA cap structure and for translation of the YFV polyprotein. We show the 2'-O methylation reaction requires the hydroxyl side chain of S56, and replacement with a negative charge inhibits enzymatic activity. Furthermore mutational alteration of S56, S56A or S56D, prevents amplification in a viral replicon system. Collectively our data suggest phosphorylation of NS5 S56 may act to shut down capping in the viral life cycle.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/fisiología , Sustitución de Aminoácidos , Sitios de Unión , Espectrometría de Masas , Metiltransferasas/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosforilación , Estructura Terciaria de Proteína , Caperuzas de ARN/metabolismo , Proteínas no Estructurales Virales/química , Replicación Viral
10.
Biol. Res ; 37(4): 565-575, 2004. ilus, graf
Artículo en Inglés | LILACS | ID: lil-437510

RESUMEN

Molecular understanding of the mechanism of excitation-contraction (EC) coupling in skeletal muscle has been made possible by cultured myotube models lacking specific dihydropyridine receptor (DHPR) subunits and ryanodine receptor type 1 (RyR1) isoforms. Transient expression of missing cDNAs in mutant myotubes leads to a rapid recovery, within days, of various Ca2+ current and EC coupling phenotypes. These myotube models have thus permitted structure-function analysis of EC coupling domains present in the DHPR controlling the opening of RyR1. The purpose of this brief review is to highlight advances made by this laboratory towards understanding the contribution of domains present in a1S and b1a subunits of the skeletal DHPR to EC coupling signaling. Our main contention is that domains of the a1S II-III loop are necessary but not sufficient to recapitulate skeletal-type EC coupling. Rather, the structural unit that controls the EC coupling signal appears to be the a1S/b1a pair.


Asunto(s)
Animales , Canales de Calcio Tipo L/fisiología , Músculo Esquelético/fisiología , ADN Complementario/análisis , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Electrofisiología , Microscopía Confocal , Modelos Biológicos , Fibras Musculares Esqueléticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA