Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
FEBS Open Bio ; 14(5): 843-854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514913

RESUMEN

Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect. N6-isopentenyladenosine (iPA), a natural cytokine modified with an isopentenyl moiety derived from the mevalonate pathway, has well-established anti-tumor activity. It inhibits cell proliferation in glioma cells, inducing cell death by apoptosis and/or necroptosis. In the present study, we found that iPA inhibits aerobic glycolysis in unmodified U87MG cells and in the same cell line engineered to over-express wild-type epidermal growth factor receptor (EGFR) or EGFR variant III (vIII), as well as in a primary GBM4 patient-derived cell line. The detection of glycolysis showed that iPA treatment suppressed ATP and lactate production. We also evaluated the response of iPA treatment in normal human astrocyte primary cells, healthy counterpart cells of the brain. Aerobic glycolysis in treated normal human astrocyte cells did not show significant changes compared to GBM cells. To determine the mechanism of iPA action on aerobic glycolysis, we investigated the expression of certain enzymes involved in this metabolic pathway. We observed that iPA reduced the expression of pyruvate kinase M2 (PKM2), which plays a key role in the regulation of aerobic glycolysis, promoting tumor cell proliferation. The reduction of PKM2 expression is a result of the inhibition of the inhibitor of nuclear factor kappa-B kinase subunit, beta/nuclear factor-kappa B pathway upon iPA treatment. In conclusion, these experimental results show that iPA may inhibit aerobic glycolysis of GBM in stabilized cell lines and primary GBM cells by targeting the expression and activity of PKM2.


Asunto(s)
Glioblastoma , Glucólisis , Isopenteniladenosina , Piruvato Quinasa , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glucólisis/efectos de los fármacos , Isopenteniladenosina/farmacología , Isopenteniladenosina/metabolismo , Piruvato Quinasa/efectos de los fármacos , Piruvato Quinasa/metabolismo
2.
J Transl Med ; 21(1): 736, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853459

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide. Despite the progress in early diagnosis and advanced therapeutic options, CRC shows a poor prognosis with a 5 year survival rate of ~ 45%. PRDM2/RIZ, a member of PR/SET domain family (PRDM), expresses two main molecular variants, the PR-plus isoform (RIZ1) and the PR-minus (RIZ2). The imbalance in their expression levels in favor of RIZ2 is observed in many cancer types. The full length RIZ1 has been extensively investigated in several cancers where it acts as a tumor suppressor, whereas few studies have explored the RIZ2 oncogenic properties. PRDM2 is often target of frameshift mutations and aberrant DNA methylation in CRC. However, little is known about its role in CRC. METHODS: We combined in-silico investigation of The Cancer Genome Atlas (TCGA) CRC datasets, cellular and molecular assays, transcriptome sequencing and functional annotation analysis to assess the role of RIZ2 in human CRC. RESULTS: Our in-silico analysis on TCGA datasets confirmed that PRDM2 gene is frequently mutated and transcriptionally deregulated in CRC and revealed that a RIZ2 increase is highly correlated with a significant RIZ1 downregulation. Then, we assayed several CRC cell lines by qRT-PCR analysis for the main PRDM2 transcripts and selected DLD1 cell line, which showed the lowest RIZ2 levels. Therefore, we overexpressed RIZ2 in these cells to mimic TCGA datasets analysis results and consequently to assess the PRDM2/RIZ2 role in CRC. Data from RNA-seq disclosed that RIZ2 overexpression induced profound changes in CRC cell transcriptome via EGF pathway deregulation, suggesting that RIZ2 is involved in the EGF autocrine regulation of DLD1 cell behavior. Noteworthy, the forced RIZ2 expression increased cell viability, growth, colony formation, migration and organoid formation. These effects could be mediated by the release of high EGF levels by RIZ2 overexpressing DLD1 cells. CONCLUSIONS: Our findings add novel insights on the putative RIZ2 tumor-promoting functions in CRC, although additional efforts are warranted to define the underlying molecular mechanism.


Asunto(s)
Neoplasias Colorrectales , Factor de Crecimiento Epidérmico , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Células Tumorales Cultivadas
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686233

RESUMEN

The spread of breast cancer to distant sites is the major cause of death in breast cancer patients. Increasing evidence supports the role of the tumor microenvironment (TME) in breast cancers, and its pathologic assessment has become a diagnostic and therapeutic tool. In the TME, a bidirectional interplay between tumor and stromal cells occurs, both at the primary and metastatic site. Hundreds of molecules, including cytokines, chemokines, and growth factors, contribute to this fine interaction to promote tumor spreading. Here, we investigated the effects of Rimonabant and Cannabidiol, known for their antitumor activity, on reprogramming the breast TME. Both compounds directly affect the activity of several pathways involved in breast cancer progression. To mimic tumor-stroma interactions during breast-to-lung metastasis, we investigated the effect of the compounds on growth factor secretion from metastatic breast cancer cells and normal and activated lung fibroblasts. In this setting, we demonstrated the anti-metastatic potential of the two compounds, and the membrane array analyses highlighted their ability to alter the release of factors involved in the autocrine and paracrine regulation of tumor proliferation, angiogenesis, and immune reprogramming. The results enforce the antitumor potential of Rimonabant and Cannabidiol, providing a novel potential tool for breast cancer TME management.


Asunto(s)
Neoplasias de la Mama , Cannabidiol , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Cannabidiol/farmacología , Rimonabant/farmacología , Microambiente Tumoral , Melanoma Cutáneo Maligno
4.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758718

RESUMEN

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Asunto(s)
Glioblastoma , Enfermedades del Recién Nacido , Humanos , Animales , Ratones , Recién Nacido , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Apoptosis , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular
6.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902485

RESUMEN

Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Encefálicas , Humanos , Contaminantes Atmosféricos/análisis , Contaminación Ambiental , Contaminación del Aire/análisis , Monitoreo del Ambiente , Carcinogénesis , Transformación Celular Neoplásica , Encéfalo , Exposición a Riesgos Ambientales
7.
J Transl Med ; 21(1): 217, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964555

RESUMEN

BACKGROUND: T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS: We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS: T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS: This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.


Asunto(s)
Epigénesis Genética , Activación de Linfocitos , Humanos , Fosfatidilinositol 3-Quinasas/genética , Factores de Transcripción/genética , Citocinas/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , N-Metiltransferasa de Histona-Lisina/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética
8.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768835

RESUMEN

Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production. For this study, it was of interest to investigate and recapitulate the antioxidant properties of these natural compounds, for the most part CBD and THC, on the production of ROS and the modulation of the intracellular redox state, with an emphasis on their use in various pathological conditions in which the reduction of ROS can be clinically useful, such as neurodegenerative disorders, inflammatory conditions, autoimmunity, and cancers. The further development of ROS-based fundamental research focused on cannabis sativa-derived compounds could be beneficial for future clinical applications.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabinoides/farmacología , Antioxidantes , Especies Reactivas de Oxígeno , Cannabidiol/farmacología , Oxidación-Reducción , Estrés Oxidativo , Dronabinol
9.
Biochimie ; 206: 89-92, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36273765

RESUMEN

Since the nineteenth century, several reports in the historical medical literature emphasized that, occasionally, cancer patients showed a clinical remission, called "Saint Peregrine tumor" as a result of natural infections. Moreover, additional evidence indicated that viruses show a tropism toward cancer cells, leading to the discovery of oncolytic activity of several viruses, called oncolytic viruses (OVs). With the technological and scientific advancements, the advent of rodent models, the establishment of in vitro cell lines, the introduction of methods for virus propagation, several attempts through the 1950s and 1970s have been made to increase OVs specificity, efficacy and safety; however, inconclusive/negative results have been reached and many researchers abandoned the field. Only in the later 1990s, the genetic engineering and the recombinant DNA techniques that allowed the generation of potent, specific and safe OVs and a better understanding of cancer cells renewed the interest in virotherapy. Currently, virotherapy represents a cancer therapeutic strategy based on the use of OVs that selectively infect and lyse cancer cells, without harming normal cells. Over the past years, several "natural" and "genetic engineered" viruses, have been investigated in clinical studies and some of them revealed encouraging results. Recently, the clinical use of OVs has also been supported by the immune stimulatory property of OVs against tumor cells. Here, we analyze the early oncolytic virotherapy before genetic engineering to highlight the relevant progresses reached, and the mechanism to stimulate host immune response, a significant challenge in current virotherapy field.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Virus Oncolíticos/genética , Neoplasias/patología , Viroterapia Oncolítica/métodos , Ingeniería Genética
10.
Int J Cancer ; 152(12): 2464-2473, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36366852

RESUMEN

The epidemic spread of obesity is nowadays recognized as a global health and economic burden, arising great interest in the scientific community. The rate of adult obesity steadily increases concomitantly with the cancer incidence. As has been comprehensively reported, obesity is included among the multiple cancer risk factors and can progressively cause and/or exacerbate certain cancer types, as colorectal and breast cancers. The term adiponcosis was forged precisely to emphasize the interconnection between obesity and cancer onset and progression. The underlying mechanisms of adiponcosis have not been fully elucidated yet, may vary on cancer type, and depend on body fat distribution. It has been proposed that insulin resistance and related chronic hyperinsulinemia, increased insulin-like growth factors production, chronic inflammation or increased bioavailability of steroid hormones could be responsible of cancer hallmarks. Additionally, it has been suggested that adipose tissue-derived hormones, cytokines and adipokines, such as leptin, adiponectin and inflammatory markers, may reflect mechanisms linked to tumorigenesis. This review summarizes the current evidence on pathways, hormones, cytokines and low-chronic inflammation subtending adiponconsis, focusing on breast and colorectal cancers. In addition, we analyzed the lifestyle interventions that could attenuate the driving forces of obesity-related cancer incidence and progression. Moreover, current targets and drugs, their pros and cons, as well as new mechanisms and targets with promising therapeutic potential in cancer are discussed. Depicting this complex interconnection will provide insights for establishing new therapeutic approaches to halt the obesity impacts and thwart cancer onset and progression.


Asunto(s)
Neoplasias de la Mama , Obesidad , Humanos , Femenino , Obesidad/complicaciones , Obesidad/metabolismo , Factores de Riesgo , Neoplasias de la Mama/metabolismo , Citocinas/metabolismo , Tejido Adiposo/metabolismo , Inflamación/complicaciones
11.
Cancers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551529

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is poorly susceptible to cytotoxic therapies. Amplification of the epidermal growth factor receptor (EGFR) and deletion of exons 2 to 7, which generates EGFR variant III (vIII), are the most common molecular alterations of GBMs that contribute to the aggressiveness of the disease. Recently, it has been shown that EGFR/EGFRvIII-targeted inhibitors enhance mitochondrial translocation by causing mitochondrial accumulation of these receptors, promoting the tumor drug resistance; moreover, they negatively modulate intrinsic mitochondria-mediated apoptosis by sequestering PUMA, leading to impaired apoptotic response in GBM cells. N6-isopentenyladenosine (i6A or iPA), a cytokinin consisting of an adenosine linked to an isopentenyl group deriving from the mevalonate pathway, has antiproliferative effects on numerous tumor cells, including GBM cells, by inducing cell death in vitro and in vivo. Here, we observed that iPA inhibits the mitochondrial respiration in GBM cells by preventing the translocation of EGFR/EGFRvIII to the mitochondria and allowing PUMA to interact with them by promoting changes in mitochondrial activity, thus playing a critical role in cell death. Our findings clearly demonstrate that iPA interferes with mitochondrial bioenergetic capacity, providing a rationale for an effective strategy for treating GBM.

12.
Front Pharmacol ; 13: 815646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559231

RESUMEN

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance. Luciferase assay revealed that IPA-mediated upregulation of FBXW7 translates in transcriptional inactivation of its oncogenic substrates (Myc, NFkB, or HIF-1α). Moreover, downregulating MGMT expression, IPA strongly enhances the killing effect of temozolomide (TMZ), producing a favorable sensitizing effect starting from a concentration range much lower than TMZ EC50. Through DNA methyltransferase (DNMT) activity assay, analysis of the global DNA methylation, and the histone modification profiles, we demonstrated that the modified adenosines behave similar to 5-AZA-dC, known DNMT inhibitor. Overall, our results provide new perspectives for the first time, suggesting the modified adenosines as epigenetic tools able to improve chemo- and radiotherapy efficacy in glioblastoma and potentially other cancers.

13.
Cell Death Discov ; 8(1): 173, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393392

RESUMEN

Targeting necroptosis is considered a promising therapeutic strategy in cancer, including Glioblastoma Multiforme (GBM), one of the most lethal brain tumors. Necroptosis is a mechanism of programmed cell death overcoming the apoptosis resistance mechanism underlying GBM tumorigenesis and malignant progression. N6-isopentenyladenosine (iPA), adenosine modified with isoprenoid derivative, displays antitumor activity in different cancer models. In previous studies, we demonstrated that iPA interferes with EGFR signaling reducing glioma cell viability. Here, we show that iPA induces necroptosis in glioblastoma cell lines and in primary cells established from tumor explants, without affecting the viability of non-cancerous brain cell lines, (Normal Human Astrocyte). The activation of RIP1, RIP3, and MLKL and the upregulation of necrosome formation were increased upon iPA treatment while caspase-3, caspase-8, and PARP were not activated in GBM cells. Co-treatment with specific necroptosis inhibitor necrostatin-1 (Nec-1) or Necrosulfonamide (NSA) prevented cell death caused by iPA treatment while the general caspase inhibitor Z-VAD-fluoromethylketone (z-VAD-fmk) did not elicit any effect, suggesting that this molecule induces caspase-independent necroptosis. These results suggest that iPA treatment can be able to bypass the apoptosis resistance mechanism in glioblastoma thereby offering higher therapeutic efficacy.

14.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35328765

RESUMEN

Medical case reports suggest that cannabinoids extracted from Cannabis sativa have therapeutic effects; however, the therapeutic employment is limited due to the psychotropic effect of its major component, Δ9-tetrahydrocannabinol (THC). The new scientific discoveries related to the endocannabinoid system, including new receptors, ligands, and mediators, allowed the development of new therapeutic targets for the treatment of several pathological disorders minimizing the undesirable psychotropic effects of some constituents of this plant. Today, FDA-approved drugs, such as nabiximols (a mixture of THC and non-psychoactive cannabidiol (CBD)), are employed in alleviating pain and spasticity in multiple sclerosis. Dronabinol and nabilone are used for the treatment of chemotherapy-induced nausea and vomiting in cancer patients. Dronabinol was approved for the treatment of anorexia in patients with AIDS (acquired immune deficiency syndrome). In this review, we highlighted the potential therapeutic efficacy of natural and synthetic cannabinoids and their clinical relevance in cancer, neurodegenerative and dermatological diseases, and viral infections.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Neoplasias , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabinoides/efectos adversos , Dronabinol/farmacología , Dronabinol/uso terapéutico , Endocannabinoides , Humanos , Neoplasias/inducido químicamente , Neoplasias/tratamiento farmacológico
15.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056141

RESUMEN

The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. In recent years, there has been a growing interest from pharmaceutical companies in formulating new topicals based on mangosteen full extracts to prevent skin aging. However, the molecules responsible for these effects and the mechanisms involved have not been investigated so far. Here, the arils and shells of Garcinia mangostana were extracted with chloroform and methanol, and the extracts were further purified to yield 12 xanthone derivatives. Their effects were evaluated using in vitro cultures of human epidermal keratinocytes. After confirming the absence of cytotoxicity, we evaluated the antioxidant potential of these compounds, identifying mangostanin as capable of both protecting and restoring oxidative damage induced by H2O2. We showed how mangostanin, by reducing the generation of intracellular reactive oxygen species (ROS), prevents the activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53, and other cellular pathways underlying cell damage and apoptosis activation. In conclusion, our study is the first to demonstrate that mangostanin is effective in protecting the skin from the action of free radicals, thus preventing skin aging, confirming a potential toward its development in the nutraceutical and cosmeceutical fields.

16.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885721

RESUMEN

N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives' (compounds 2a-m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.


Asunto(s)
Adenosina/química , Antineoplásicos/química , Neoplasias Colorrectales/tratamiento farmacológico , Geraniltranstransferasa/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Geraniltranstransferasa/antagonistas & inhibidores , Células HCT116 , Humanos , Ácido Mevalónico/antagonistas & inhibidores , Ácido Mevalónico/metabolismo , Ácido Mevalónico/farmacología , Ratones , Relación Estructura-Actividad , Interfaz Usuario-Computador
17.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769459

RESUMEN

PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a "Yin and Yang" manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.


Asunto(s)
Proteínas Portadoras/metabolismo , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor/metabolismo , Animales , Humanos , Neoplasias/patología , Neurogénesis/fisiología , Dolor/patología
18.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638872

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. METHODS: Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. RESULTS: We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. CONCLUSIONS: Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.


Asunto(s)
Cateninas/metabolismo , Glioblastoma/tratamiento farmacológico , Isopenteniladenosina/farmacología , Neovascularización Patológica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/genética , Línea Celular Tumoral , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética
19.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359686

RESUMEN

Thyroid nodules are detected in up to 60% of people by ultrasound examination. Most of them are benign nodules requiring only follow up, while about 4% are carcinomas and require surgery. Malignant nodules can be diagnosed by the fine-needle aspiration cytology (FNAC), which however yields an indeterminate result in about 30% of the cases. Testing for RAS mutations has been proposed to refine indeterminate cytology. However, the new entity of non-invasive follicular thyroid neoplasm, considered as having a benign evolution and frequently carrying RAS mutations, is expected to lower the specificity of this mutation. The aggressive behavior of thyroid cancer with RAS mutations, initially reported, has been overturned by the recent finding of the cooperative role of TERT mutations. Although some animal models support the carcinogenic role of RAS mutations in the thyroid, evidence that adenomas harboring these mutations evolve in carcinomas is lacking. Their poor specificity and sensitivity make the clinical impact of RAS mutations on the management of thyroid nodules with indeterminate cytology unsatisfactory. Evidence suggests that RAS mutation-positive benign nodules demand a conservative treatment. To have a clinical impact, RAS mutations in thyroid malignancies need not to be considered alone but rather together with other genetic abnormalities in a more general context.

20.
Diagnostics (Basel) ; 11(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069924

RESUMEN

Alpha B-crystallin (CRYAB, HSPB5) belongs to the small heat shock protein (HSP) family and is highly expressed in various human cancers, suggesting a crucial role in tumor progression. However, few studies have examined CRYAB expression in colorectal cancer (CRC). In the present study, we investigated the relationship between CRYAB expression and the clinicopathological features of CRC samples. We comparatively analyzed CRYAB protein expression in 111 CRC tissues and normal adjacent colonic tissue, observing that it was significantly lower in CRC tissues than in corresponding non-cancerous tissues. Moreover, immunohistochemical analysis showed a significant correlation between CRYAB expression and high histological grade G3 (p = 0.033). In summary, our results point to its possible application as a prognostic biomarker in CRC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA