Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2313851121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976734

RESUMEN

Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.


Asunto(s)
Proteómica , Humanos , Proteómica/métodos , Línea Celular Tumoral , Células HCT116 , Técnicas de Cultivo de Célula/métodos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Trióxido de Arsénico/farmacología , Auranofina/farmacología , Proliferación Celular/efectos de los fármacos , Espectrometría de Masas/métodos
2.
Clin Cancer Res ; 30(1): 159-175, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37861398

RESUMEN

PURPOSE: Despite high clinical need, there are no biomarkers that accurately predict the response of patients with metastatic melanoma to anti-PD-1 therapy. EXPERIMENTAL DESIGN: In this multicenter study, we applied protein depletion and enrichment methods prior to various proteomic techniques to analyze a serum discovery cohort (n = 56) and three independent serum validation cohorts (n = 80, n = 12, n = 17). Further validation analyses by literature and survival analysis followed. RESULTS: We identified several significantly regulated proteins as well as biological processes such as neutrophil degranulation, cell-substrate adhesion, and extracellular matrix organization. Analysis of the three independent serum validation cohorts confirmed the significant differences between responders (R) and nonresponders (NR) observed in the initial discovery cohort. In addition, literature-based validation highlighted 30 markers overlapping with previously published signatures. Survival analysis using the TCGA database showed that overexpression of 17 of the markers we identified correlated with lower overall survival in patients with melanoma. CONCLUSIONS: Ultimately, this multilayered serum analysis led to a potential marker signature with 10 key markers significantly altered in at least two independent serum cohorts: CRP, LYVE1, SAA2, C1RL, CFHR3, LBP, LDHB, S100A8, S100A9, and SAA1, which will serve as the basis for further investigation. In addition to patient serum, we analyzed primary melanoma tumor cells from NR and found a potential marker signature with four key markers: LAMC1, PXDN, SERPINE1, and VCAN.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteómica , Biomarcadores de Tumor/metabolismo , Análisis de Supervivencia
3.
Nat Cardiovasc Res ; 2: 835-852, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38075556

RESUMEN

During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.

4.
Sci Rep ; 13(1): 9594, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414858

RESUMEN

Given the absence of written records, the main source of information available to analyze gender inequalities in early complex societies is the human body itself. And yet, for decades, archaeologists have struggled with the sex estimation of poorly preserved human remains. Here we present an exceptional case study that shows how ground-breaking new scientific methods may address this problem. Through the analysis of sexually dimorphic amelogenin peptides in tooth enamel, we establish that the most socially prominent person of the Iberian Copper Age (c. 3200-2200 BC) was not male, as previously thought, but female. The analysis of this woman, discovered in 2008 at Valencina, Spain, reveals that she was a leading social figure at a time where no male attained a remotely comparable social position. Only other women buried a short time after in the Montelirio tholos, part of the same burial area, appear to have enjoyed a similarly high social position. Our results invite to reconsider established interpretations about the political role of women at the onset of early social complexity, and question traditionally held views of the past. Furthermore, this study anticipates the changes that newly developed scientific methods may bring to prehistoric archaeology and the study of human social evolution.


Asunto(s)
Liderazgo , Péptidos , Humanos , Femenino , Amelogenina , España , Arqueología
5.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365178

RESUMEN

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Asunto(s)
Neoplasias de la Médula Ósea , Neuroblastoma , Humanos , Niño , Médula Ósea/patología , Monocitos/metabolismo , Transcriptoma , Epigenómica , Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/metabolismo , Neoplasias de la Médula Ósea/patología , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
6.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296582

RESUMEN

The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Metilación de ADN/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Arch Toxicol ; 97(6): 1659-1675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37117602

RESUMEN

Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.


Asunto(s)
Mecanotransducción Celular , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidad , Ácido Palmítico/metabolismo , Proteómica , Ácidos Grasos , Ácido Oléico/metabolismo
8.
Cancer Res ; 83(7): 1128-1146, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946761

RESUMEN

Clinical management of melanomas with NRAS mutations is challenging. Targeting MAPK signaling is only beneficial to a small subset of patients due to resistance that arises through genetic, transcriptional, and metabolic adaptation. Identification of targetable vulnerabilities in NRAS-mutated melanoma could help improve patient treatment. Here, we used multiomics analyses to reveal that NRAS-mutated melanoma cells adopt a mesenchymal phenotype with a quiescent metabolic program to resist cellular stress induced by MEK inhibition. The metabolic alterations elevated baseline reactive oxygen species (ROS) levels, leading these cells to become highly sensitive to ROS induction. In vivo xenograft experiments and single-cell RNA sequencing demonstrated that intratumor heterogeneity necessitates the combination of a ROS inducer and a MEK inhibitor to inhibit both tumor growth and metastasis. Ex vivo pharmacoscopy of 62 human metastatic melanomas confirmed that MEK inhibitor-resistant tumors significantly benefited from the combination therapy. Finally, oxidative stress response and translational suppression corresponded with ROS-inducer sensitivity in 486 cancer cell lines, independent of cancer type. These findings link transcriptional plasticity to a metabolic phenotype that can be inhibited by ROS inducers in melanoma and other cancers. SIGNIFICANCE: Metabolic reprogramming in drug-resistant NRAS-mutated melanoma cells confers sensitivity to ROS induction, which suppresses tumor growth and metastasis in combination with MAPK pathway inhibitors.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Especies Reactivas de Oxígeno , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Línea Celular Tumoral , Mutación , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
9.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979008

RESUMEN

Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.

10.
Cells ; 12(5)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36899884

RESUMEN

Proteomics is an indispensable analytical technique to study the dynamic functioning of biological systems via different proteins and their proteoforms. In recent years, bottom-up shotgun has become more popular than gel-based top-down proteomics. The current study examined the qualitative and quantitative performance of these two fundamentally different methodologies by the parallel measurement of six technical and three biological replicates of the human prostate carcinoma cell line DU145 using its two most common standard techniques, label-free shotgun and two-dimensional differential gel electrophoresis (2D-DIGE). The analytical strengths and limitations were explored, finally focusing on the unbiased detection of proteoforms, exemplified by discovering a prostate cancer-related cleavage product of pyruvate kinase M2. Label-free shotgun proteomics quickly yields an annotated proteome but with reduced robustness, as determined by three times higher technical variation compared to 2D-DIGE. At a glance, only 2D-DIGE top-down analysis provided valuable, direct stoichiometric qualitative and quantitative information from proteins to their proteoforms, even with unexpected post-translational modifications, such as proteolytic cleavage and phosphorylation. However, the 2D-DIGE technology required almost 20 times as much time per protein/proteoform characterization with more manual work. Ultimately, this work should expose both techniques' orthogonality with their different contents of data output to elucidate biological questions.


Asunto(s)
Proteoma , Proteómica , Masculino , Humanos , Proteómica/métodos , Proteoma/análisis , Procesamiento Proteico-Postraduccional , Electroforesis en Gel Bidimensional , Fosforilación
11.
Chemistry ; 29(4): e202202648, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36222279

RESUMEN

A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the in vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Estructura Molecular , Proteómica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Quelantes/química , Cristalografía por Rayos X , Ligandos , Línea Celular Tumoral
12.
Angew Chem Int Ed Engl ; 61(43): e202209136, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36004624

RESUMEN

Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 µM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.


Asunto(s)
Proteínas Hierro-Azufre , Neoplasias Ováricas , Renio , Humanos , Femenino , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Ferritinas/metabolismo
13.
Haematologica ; 107(9): 2121-2132, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818873

RESUMEN

Von Willebrand factor (VWF) and factor VIII (FVIII) circulate in a noncovalent complex in blood and promote primary hemostasis and clotting, respectively. A new VWF A1-domain binding aptamer, BT200, demonstrated good subcutaneous bioavailability and a long half-life in non-human primates. This first-in-human, randomized, placebo-controlled, doubleblind trial tested the hypothesis that BT200 is well tolerated and has favorable pharmacokinetic and pharmacodynamic effects in 112 volunteers. Participants received one of the following: a single ascending dose of BT200 (0.18-48 mg) subcutaneously, an intravenous dose, BT200 with concomitant desmopressin or multiple doses. Pharmacokinetics were characterized, and the pharmacodynamic effects were measured by VWF levels, FVIII clotting activity, ristocetin-induced aggregation, platelet function under high shear rates, and thrombin generation. The mean half-lives ranged from 7-12 days and subcutaneous bioavailability increased dose-dependently exceeding 55% for doses of 6-48 mg. By blocking free A1 domains, BT200 dose-dependently decreased ristocetin-induced aggregation, and prolonged collagen-adenosine diphosphate and shear-induced platelet plug formation times. However, BT200 also increased VWF antigen and FVIII levels 4-fold (P<0.001), without increasing VWF propeptide levels, indicating decreased VWF/FVIII clearance. This, in turn, increased thrombin generation and accelerated clotting. Desmopressin-induced VWF/FVIII release had additive effects on a background of BT200. Tolerability and safety were generally good, but exaggerated pharmacology was seen at saturating doses. This trial identified a novel mechanism of action for BT200: BT200 dose-dependently increases VWF/FVIII by prolonging half-life at doses well below those which inhibit VWF-mediated platelet function. This novel property can be exploited therapeutically to enhance hemostasis in congenital bleeding disorders.


Asunto(s)
Enfermedades de von Willebrand , Factor de von Willebrand , Desamino Arginina Vasopresina , Factor VIII , Humanos , Ristocetina/farmacología , Trombina , Factor de von Willebrand/metabolismo
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884768

RESUMEN

Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/lesiones , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Osteoartritis/patología , Regeneración/fisiología , Proteínas de Fase Aguda/metabolismo , Animales , Células Cultivadas , Feto/fisiología , Macrófagos/citología , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/citología , Ovinos , Membrana Sinovial/citología , Membrana Sinovial/lesiones , Membrana Sinovial/metabolismo
15.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34503120

RESUMEN

While the bone marrow attracts tumor cells in many solid cancers leading to poor outcome in affected patients, comprehensive analyses of bone marrow metastases have not been performed on a single-cell level. We here set out to capture tumor heterogeneity and unravel microenvironmental changes in neuroblastoma, a solid cancer with bone marrow involvement. To this end, we employed a multi-omics data mining approach to define a multiplex imaging panel and developed DeepFLEX, a pipeline for subsequent multiplex image analysis, whereby we constructed a single-cell atlas of over 35,000 disseminated tumor cells (DTCs) and cells of their microenvironment in the metastatic bone marrow niche. Further, we independently profiled the transcriptome of a cohort of 38 patients with and without bone marrow metastasis. Our results revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary marker to capture DTC heterogeneity. Importantly, we demonstrate that malignant bone marrow infiltration is associated with an inflammatory response and at the same time the presence of immuno-suppressive cell types, most prominently an immature neutrophil/granulocytic myeloid-derived suppressor-like cell type. The presented findings indicate that metastatic tumor cells shape the bone marrow microenvironment, warranting deeper investigations of spatio-temporal dynamics at the single-cell level and their clinical relevance.

16.
J Biol Chem ; 296: 100487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33676898

RESUMEN

Numerous observations indicate that red blood cells (RBCs) affect T-cell activation and proliferation. We have studied effects of packed RBCs (PRBCs) on T-cell receptor (TCR) signaling and the molecular mechanisms whereby (P)RBCs modulate T-cell activation. In line with previous reports, PRBCs attenuated the expression of T-cell activation markers CD25 and CD69 upon costimulation via CD3/CD28. In addition, T-cell proliferation and cytokine expression were markedly reduced when T-cells were stimulated in the presence of PRBCs. Inhibitory activity of PRBCs required direct cell-cell contact and intact PRBCs. The production of activation-induced cellular reactive oxygen species, which act as second messengers in T-cells, was completely abrogated to levels of unstimulated T-cells in the presence of PRBCs. Phosphorylation of the TCR-related zeta chain and thus proximal TCR signal transduction was unaffected by PRBCs, ruling out mechanisms based on secreted factors and steric interaction restrictions. In large part, downstream signaling events requiring reactive oxygen species for full functionality were affected, as confirmed by an untargeted MS-based phosphoproteomics approach. PRBCs inhibited T-cell activation more efficiently than treatment with 1 mM of the antioxidant N-acetyl cysteine. Taken together, our data imply that inflammation-related radical reactions are modulated by PRBCs. These immunomodulating effects may be responsible for clinical observations associated with transfusion of PRBCs.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Eritrocitos/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Lectinas Tipo C/inmunología , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Eritrocitos/metabolismo , Humanos , Inmunomodulación , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares , Activación de Linfocitos , Fosforilación , Transducción de Señal , Linfocitos T/metabolismo
17.
Nat Commun ; 12(1): 1624, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712610

RESUMEN

Adult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Familia de Proteínas EGF/genética , Familia de Proteínas EGF/metabolismo , Neurogénesis/fisiología , Células de Schwann/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al Calcio/genética , Línea Celular , Plasticidad de la Célula/fisiología , Proliferación Celular , Técnicas de Cocultivo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regeneración Nerviosa , Neuroblastoma/patología , Neurogénesis/genética , Traumatismos de los Nervios Periféricos , Transcriptoma , Adulto Joven
18.
Biomolecules ; 11(1)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467719

RESUMEN

Reproducibility issues regarding in vitro cell culture experiments are related to genetic fluctuations and batch-wise variations of biological materials such as fetal calf serum (FCS). Genome sequencing may control the former, while the latter may remain unrecognized. Using a U937 macrophage model for cell differentiation and inflammation, we investigated whether the formation of effector molecules was dependent on the FCS batch used for cultivation. High resolution mass spectrometry (HRMS) was used to identify FCS constituents and to explore their effects on cultured cells evaluating secreted cytokines, eicosanoids, and other inflammatory mediators. Remarkably, the FCS eicosanoid composition showed more batch-dependent variations than the protein composition. Efficient uptake of fatty acids from the medium by U937 macrophages and inflammation-induced release thereof was evidenced using C13-labelled arachidonic acid, highlighting rapid lipid metabolism. For functional testing, FCS batch-dependent nanomolar concentration differences of two selected eicosanoids, 5-HETE and 15-HETE, were balanced out by spiking. Culturing U937 cells at these defined conditions indeed resulted in significant proteome alterations indicating HETE-induced PPARγ activation, independently corroborated by HETE-induced formation of peroxisomes observed by high-resolution microscopy. In conclusion, the present data demonstrate that FCS-contained eicosanoids, subject to substantial batch-wise variation, may modulate cellular effector functions in cell culture experiments.


Asunto(s)
Técnicas de Cultivo de Célula , Eicosanoides/metabolismo , Albúmina Sérica Bovina/química , Ácidos Grasos/análisis , Humanos , Ácidos Hidroxieicosatetraenoicos , Macrófagos/metabolismo , Peroxisomas/metabolismo , Reproducibilidad de los Resultados , Células U937
19.
Front Oncol ; 11: 746411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35251951

RESUMEN

With the onset of resistance, ovarian cancer cells display almost unpredictable adaptive potential. This may derive from the tumor genetic ancestry and can be additionally tailored by post translational protein modifications (PTMs). In this study, we took advantage of high-end (phospho)-proteome analysis combined with multiparametric morphometric profiling in high-grade serous (OVCAR-3) and non-serous (SKOV-3) ovarian carcinoma cells. For functional experiments, we applied two different protocols, representing typical conditions of the abdominal cavity and of the growing tumor tissue: on the one side hypoxia (oxygen 1%) which develops within the tumor mass or is experienced during migration/extravasation in non-vascularized areas. On the other hand, fluid shear stress (250 rpm, 2.8 dyn/cm2) which affects tumor surface in the peritoneum or metastases in the bloodstream. After 3 hours incubation, treatment groups were clearly distinguishable by PCA analysis. Whereas basal proteome profiles of OVCAR-3 and SKOV-3 cells appeared almost unchanged, phosphoproteome analysis revealed multiple regulatory events. These affected primarily cellular structure and proliferative potential and consolidated in the proteome signature after 24h treatment. Upon oxygen reduction, metabolism switched toward glycolysis (e.g. upregulation hexokinase-2; HK2) and cell size increased, in concerted regulation of pathways related to Rho-GTPases and/or cytoskeletal elements, resembling a vasculogenic mimicry response. Shear stress regulated proteins governing cell cycle and structure, as well as the lipid metabolism machinery including the delta(14)-sterol reductase, kinesin-like proteins (KIF-22/20A) and the actin-related protein 2/3 complex. Independent microscopy-based validation experiments confirmed cell-type specific morphometric responses. In conclusion, we established a robust workflow enabling the description of the adaptive potential of ovarian cancer cells to physical and chemical stressors typical for the abdominal cavity and supporting the identification of novel molecular mechanisms sustaining tumor plasticity and pharmacologic resistance.

20.
Cancers (Basel) ; 12(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466393

RESUMEN

Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA