Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698270

RESUMEN

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Doxorrubicina , Fluorouracilo , Esferoides Celulares , Humanos , Fluorouracilo/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Doxorrubicina/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células HT29 , Proliferación Celular/efectos de los fármacos , Células CACO-2 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética
2.
Food Sci Nutr ; 12(3): 1928-1939, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455224

RESUMEN

This study presents the first findings regarding extraction, isolation, enzyme inhibition, and antioxidant activity. The oral mucosal wound-healing process was investigated using propolis water extract (PWE) incubation with gingival fibroblast cells and concluded that propolis was effective on the oral mucosal wound-healing pattern compared to untreated controls. Additionally, phenolic compounds (fraxetin, apigenin, galangin, pinobanksin, chrysin, etc.) were isolated from propolis, and their chemical structures were elucidated using comprehensive spectroscopic methods. The antioxidant and anti-Alzheimer potential activities of PWE and some isolated compounds were screened and revealing their inhibitory effects on acetylcholinesterase (AChE) with IC50 values ranging from 0.45 ± 0.01 to 1.15 ± 0.03 mM, as well as remarkable free-radical scavenging and metal reduction capacities. The results suggest that these compounds and PWE can be used as therapeutic agents due to their antioxidant properties and inhibitory potential on AChE. It can also be used for therapeutic purposes since its wound-healing effect is promising.

3.
Chem Biodivers ; 20(1): e202200872, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594615

RESUMEN

Breast cancer is known as the most common type of invasive cancer in women. It is well-known that phenolic compounds play an important role in the treatment of this disease. This study hypothesized that isoeugenol based two polyphenolic compounds 1 and 2 exerts its anti-proliferative effects through the induction of apoptosis and cell migration arrest on human breast cancer cell. Based on this hypothesis, the study aimed to investigate the anti-proliferative, anti-migrative effects of these compounds and their possible basic molecular mechanisms of action in MCF-7 cell lines. As a result, isoeugenol-based compounds 1 and 2 showed anti-proliferative, anti-apoptotic and anti-migrative effects in MCF-7 breast cancer cells. This result was supported by molecular analyzes and it was determined that there were changes in the expression of some gene regions involved in apoptosis and migration. Additionally, it was a remarkable result that cell viability inhibition did not occur in healthy breast tissue cells and no cytotoxic effect was observed. The existence of such a differentiation between cancer cells and healthy cells significantly increases the potential of these compounds to be used as chemotherapeutic drug active ingredients without side effects.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Polifenoles/farmacología , Detección Precoz del Cáncer , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral
4.
Bioorg Chem ; 130: 106230, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375352

RESUMEN

Colorectal cancer is a type of cancer encountered worldwide and ranks third among all cancer types in terms of incidence. Polyphenols have been shown to have a wide range of biological functions, including a significant impact on cancer start, development, and promotion through regulating many signaling pathways. The aim of this study was to investigate the anticancer effects of isoeugenol based compounds 1, 2 on HT29 colorectal cancer cell line in vitro. MTT test and scratch assay were carried out to determine the effect of these compounds on HT29 cell proliferation and migration respectively. In addition, mRNA expression levels of apoptosis and metastasis-related genes (p53, Bcl2, Bax, Caspase 3, Caspase7, Caspase8, Caspase9, HIF1-α, VEGF, MMP-2, MMP-9) were examined by quantitative real-time PCR. The results indicated that 1 and 2 inhibited HT29 cell proliferation and induced apoptosis by increasing the Bax/Bcl2 ratio and Caspase-9 and Caspase-3 mRNA expression. In conclusion, the results of this study showed that the treatment of these compounds significantly suppressed the mRNA expressions of metastasis-related genes such as Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor and Hypoxia­Inducible Factor 1α.


Asunto(s)
Neoplasias del Colon , Metaloproteinasa 2 de la Matriz , Humanos , Proteína X Asociada a bcl-2/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Fenoles/química , Fenoles/farmacología , ARN Mensajero , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacología , Inhibición de Migración Celular/efectos de los fármacos
5.
Chem Biodivers ; 19(4): e202100854, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35266298

RESUMEN

In this research, the effect of synthesized polyphenolic compounds 4 and 5 at the cellular and molecular levels was examined. Within this framework, related substances effects on prostate cell (PC3) viability were evaluated by MTT analysis, and their effects on migration were examined by in vitro scratch analysis. Additionally, mRNA expression levels of gene regions known to be associated with metastasis and apoptosis were determined by real-time quantitative PCR. DNA binding researches have also been carried out to determine the DNA compound interactions. As a consequence, it was determined that 4 and 5 obstructed the PC3 cell viability in a manner that is dose- and time-dependent. The IC50 dose of 4 and 5 in PC3 cell was found to be 60.14 µM, 15.51 µM for 48 h, respectively. 4 and 5 substances showed suppressive effect on migration of PC3 cancer cells in the in vitro scratch model created at IC50 concentrations. Compared to the negative control, PC3 cancer cells treated with 4 and 5 showed 24 % and 46 % closure, respectively, at the wound site at 48 h. 4 and 5 compounds were treated at IC50 concentrations with PC3 cancer cells for 48 h, and then the effects of both compounds on the gene expression, that have been linked to metastasis and apoptosis, at the mRNA level were evaluated. It was determined that 4 decreased the expression of the HIF1-α gene 294 times and 5 decreased the expression of the said gene 30 times. In addition, both 4 and 5 were able to significantly increase the Bax/Bcl-2 mRNA expression ratio (32.65 and 10.46 fold, P<0.0001) in PC3 cells as compared to untreated cells after 48 h. Finally, when DNA binding analysis results were evaluated, it was determined that both polyphenolic compounds did not bind to DNA at the tested time and concentrations and did not cause DNA breaks.


Asunto(s)
Neoplasias de la Próstata , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Eugenol/análogos & derivados , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA