Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Tob Induc Dis ; 19: 75, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720794

RESUMEN

INTRODUCTION: Although smoking is a strong risk factor for lung diseases including asthma, COPD, and asthma-COPD overlap syndrome (ACOS), studies are needed to examine the association between e-cigarettes and asthma, COPD, and ACOS. This study evaluated the association between e-cigarette use and self-reported diagnosis of asthma, COPD, and ACOS using a large nationally representative sample of adults aged ≥18 years in the United States. METHODS: Cross-sectional data from the Behavioral Risk Factor Surveillance System (BRFSS) from 2016 to 2018 were used to examine self-reported information on current e-cigarette use, demographic variables, and asthma and COPD status among never cigarette smokers (n=8736). Asthma and COPD were measured by self-reported diagnosis, and respondents who reported having both diagnoses were then classified as having ACOS. Of the 469077 never cigarette smokers, 4368 non-e-cigarette users were 1:1 propensity score-matched to e-cigarette users on age, sex, race/ethnicity and education level. We used multinomial logistic regression to examine association between current e-cigarette use and self-report asthma, COPD, and ACOS while controlling for marital status and employment in addition to matching variables. RESULTS: Compared with never e-cigarette users, e-cigarette users had increased odds of self-reported ACOS (OR=2.27; 95% CI: 2.23-2.31), asthma (OR=1.26; 95% CI: 1.25-1.27) and COPD (OR=1.44; 95% CI: 1.42-1.46). CONCLUSIONS: Our findings suggest that e-cigarette use is associated with an increased odds of self-reported asthma, COPD, and ACOS among never combustible cigarette smokers. BRFSS provides cross-sectional survey data, therefore a causal relationship between e-cigarette use and the three lung diseases cannot be evaluated. Future longitudinal studies are needed to validate these findings.

3.
Tob Induc Dis ; 19: 23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841062

RESUMEN

INTRODUCTION: Although smoking is a strong risk factor for lung diseases including asthma, COPD, and asthma-COPD overlap syndrome (ACOS), studies are needed to examine the association between e-cigarettes and asthma, COPD, and ACOS. This study evaluated the association between e-cigarette use and self-reported diagnosis of asthma, COPD, and ACOS using a large nationally representative sample of adults aged ≥18 years in the United States. METHODS: Cross-sectional data from the Behavioral Risk Factor Surveillance System (BRFSS) from 2016 to 2018 was used to examine self-reported information on current e-cigarette use, demographic variables, and asthma and COPD status among never cigarette smokers (n=8736). Asthma and COPD were measured by self-reported diagnosis, and respondents who reported having both diagnoses were then classified as having ACOS. Of the 46079 never cigarette smokers, 4368 non-e-cigarette smokers were 1:1 propensity score-matched to e-cigarette smokers on age, sex, race/ethnicity and education level. We used multinomial logistic regression to examine association between current e-cigarette use and self-report asthma, COPD, and ACOS while controlling for marital status and employment in addition to matching variables. RESULTS: Compared with never e-cigarette smokers, e-cigarette smokers had increased odds of self-reported ACOS (OR=2.27; 95% CI: 2.23-2.31), asthma (OR=1.26; 95% CI: 1.25-1.27) and COPD (OR=1.44; 95% CI: 1.42-1.46). CONCLUSIONS: Data from this large nationally representative sample suggest that e-cigarette use is associated with increased odds of self-reported asthma, COPD, and ACOS among never combustible cigarette smokers. The odds of ACOS were twice as high among e-cigarette users compared with never smokers of conventional cigarettes. The findings from this study suggest the need to further investigate the long-term and short-term health effects of e-cigarette use, since the age of those at risk in our study was 18-24 years.

4.
BMC Bioinformatics ; 20(Suppl 2): 98, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30871476

RESUMEN

BACKGROUND: Barrett's esophagus (BE) is most commonly seen as the condition in which the normal squamous epithelium lining of the esophagus is replaced by goblet cells. Many studies show that BE is a predisposing factor for the development of esophageal adenocarcinoma (EAC), a particularly lethal cancer. The use of single nucleotide polymorphisms (SNPs) to map BE/EAC genes has previously provided insufficient genetic information to fully characterize the heterogeneous nature of the disease. We therefore hypothesize that rigorous interrogation of other types of genomic changes, e.g. tracts of homozygosity (TOH), repetitive elements, and insertion/deletions, may provide a comprehensive understanding of the development of BE/EAC. RESULTS: First, we used a case-control framework to identify TOHs by using SNPs and tested for association with BE/EAC. Second, we used a case only approach on a validation series of eight samples subjected to exome sequencing to identify repeat elements and insertion/deletions. Third, insertion/deletions and repeat elements identified in the exomes were then mapped onto genes in the significant TOH regions. Overall, 24 TOH regions were significantly differentially represented among cases, as compared to controls (adjusted-P = 0.002-0.039). Interestingly, four BE/EAC-associated genes within the TOH regions consistently showed insertions and deletions that overlapped across eight exomes. Predictive functional analysis identified NOTCH, WNT, and G-protein inflammation pathways that affect BE and EAC. CONCLUSIONS: The integration of common TOHs (cTOHs) with repetitive elements, insertions, and deletions within exomes can help functionally prioritize factors contributing to low to moderate penetrance predisposition to BE/EAC.


Asunto(s)
Adenocarcinoma/genética , Esófago de Barrett/genética , Neoplasias Esofágicas/genética , Secuenciación del Exoma/métodos , Adenocarcinoma/patología , Esófago de Barrett/patología , Neoplasias Esofágicas/patología , Exoma , Genoma , Homocigoto , Humanos , Factores de Riesgo
5.
Front Microbiol ; 9: 1757, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127774

RESUMEN

Non-small cell lung cancer (NSCLC) is the major form of lung cancer, with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being its major subtypes. Smoking alone cannot completely explain the lung cancer etiology. We hypothesize that altered lung microbiome and chronic inflammatory insults in lung tissues contribute to carcinogenesis. Here we explore the microbiome composition of LUAD samples, compared to LUSC and normal samples. Extraction of microbiome DNA in formalin-fixed, paraffin-embedded (FFPE) lung tumor and normal adjacent tissues was meticulously performed. The 16S rRNA product from extracted microbiota was subjected to microbiome amplicon sequencing. To assess the contribution of the host genome, CD36 expression levels were analyzed then integrated with altered NSCLC subtype-specific microbe sequence data. Surprisingly phylum Cyanobacteria was consistently observed in LUAD samples. Across the NSCLC subtypes, differential abundance across four phyla (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes) was identified based on the univariate analysis (p-value < 6.4e-4 to 3.2e-2). In silico metagenomic and pathway analyses show that presence of microcystin correlates with reduced CD36 and increased PARP1 levels. This was confirmed in microcystin challenged NSCLC (A427) cell lines and Cyanobacteria positive LUAD tissues. Controlling the influx of Cyanobacteria-like particles or microcystin and the inhibition of PARP1 can provide a potential targeted therapy and prevention of inflammation-associated lung carcinogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA