Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Biotechnol ; 32(12): 1250-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25402615

RESUMEN

The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.


Asunto(s)
Hurones/genética , Genoma , Gripe Humana/genética , Análisis de Secuencia de ADN , Animales , Secuencia de Bases , Mapeo Cromosómico , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Gripe Humana/transmisión , Gripe Humana/virología , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad
2.
mBio ; 5(6): e01864, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25370491

RESUMEN

UNLABELLED: The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little understanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integrity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders, active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown function. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most comprehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies. IMPORTANCE: Fusobacterium species have recently been implicated in a broad spectrum of human pathologies, including Crohn's disease, ulcerative colitis, preterm birth, and colorectal cancer. Largely due to the genetic intractability of member species, the mechanisms by which Fusobacterium causes these pathologies are not well understood, although adherence to and active invasion of host cells appear important. We examined whole-genome sequence data from a diverse set of Fusobacterium species to identify genetic determinants of active forms of host cell invasion. Our analyses revealed that actively invading Fusobacterium species have larger genomes than passively invading species and possess a specific complement of genes-including a class of genes of unknown function that we predict evolved to enable host cell adherence and invasion. This study provides an important framework for future studies on the role of Fusobacterium in pathologies such as colorectal cancer.


Asunto(s)
Adhesión Bacteriana , Endocitosis , Fusobacterium/fisiología , Genes Bacterianos , Genoma Bacteriano , Factores de Virulencia/genética , Evolución Molecular , Fusobacterium/genética , Fusobacterium/crecimiento & desarrollo , Análisis de Secuencia de ADN , Virulencia
3.
J Infect Dis ; 209(4): 571-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24041793

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) colonization predicts later infection, with both host and pathogen determinants of invasive disease. METHODS: This nested case-control study evaluates predictors of MRSA bacteremia in an 8-intensive care unit (ICU) prospective adult cohort from 1 September 2003 through 30 April 2005 with active MRSA surveillance and collection of ICU, post-ICU, and readmission MRSA isolates. We selected MRSA carriers who did (cases) and those who did not (controls) develop MRSA bacteremia. Generating assembled genome sequences, we evaluated 30 MRSA genes potentially associated with virulence and invasion. Using multivariable Cox proportional hazards regression, we assessed the association of these genes with MRSA bacteremia, controlling for host risk factors. RESULTS: We collected 1578 MRSA isolates from 520 patients. We analyzed host and pathogen factors for 33 cases and 121 controls. Predictors of MRSA bacteremia included a diagnosis of cancer, presence of a central venous catheter, hyperglycemia (glucose level, >200 mg/dL), and infection with a MRSA strain carrying the gene for staphylococcal enterotoxin P (sep). Receipt of an anti-MRSA medication had a significant protective effect. CONCLUSIONS: In an analysis controlling for host factors, colonization with MRSA carrying sep increased the risk of MRSA bacteremia. Identification of risk-adjusted genetic determinants of virulence may help to improve prediction of invasive disease and suggest new targets for therapeutic intervention.


Asunto(s)
Bacteriemia/microbiología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Anciano , Anciano de 80 o más Años , Toxinas Bacterianas/genética , Estudios de Casos y Controles , Enterotoxinas/genética , Femenino , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Masculino , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Persona de Mediana Edad , Factores de Riesgo
4.
Genome Res ; 22(2): 292-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22009990

RESUMEN

The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.


Asunto(s)
Neoplasias Colorrectales/microbiología , Fusobacterium/genética , Genoma Bacteriano , Fusobacterium/clasificación , Fusobacterium/patogenicidad , Humanos , Intestino Grueso/microbiología , Metagenoma/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
J Virol ; 86(2): 835-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22090119

RESUMEN

Little is known about the rate at which genetic variation is generated within intrahost populations of dengue virus (DENV) and what implications this diversity has for dengue pathogenesis, disease severity, and host immunity. Previous studies of intrahost DENV variation have used a low frequency of sampling and/or experimental methods that do not fully account for errors generated through amplification and sequencing of viral RNAs. We investigated the extent and pattern of genetic diversity in sequence data in domain III (DIII) of the envelope (E) gene in serial plasma samples (n = 49) taken from 17 patients infected with DENV type 1 (DENV-1), totaling some 8,458 clones. Statistically rigorous approaches were employed to account for artifactual variants resulting from amplification and sequencing, which we suggest have played a major role in previous studies of intrahost genetic variation. Accordingly, nucleotide sequence diversities of viral populations were very low, with conservative estimates of the average levels of genetic diversity ranging from 0 to 0.0013. Despite such sequence conservation, we observed clear evidence for mixed infection, with the presence of multiple phylogenetically distinct lineages present within the same host, while the presence of stop codon mutations in some samples suggests the action of complementation. In contrast to some previous studies we observed no relationship between the extent and pattern of DENV-1 genetic diversity and disease severity, immune status, or level of viremia.


Asunto(s)
Coinfección/virología , Virus del Dengue/genética , Dengue/virología , Variación Genética , Adolescente , Adulto , Secuencia de Bases , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Virus del Dengue/metabolismo , Evolución Molecular , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Filogenia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Adulto Joven
6.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046142

RESUMEN

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Asunto(s)
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicosis/microbiología , Proteínas Quinasas/genética , Metabolismo de los Hidratos de Carbono/genética , Sistemas de Liberación de Medicamentos , Evolución Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Familia de Multigenes/genética , Onygenales/enzimología , Paracoccidioides/enzimología , Filogenia , Proteolisis , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
7.
Bioinformatics ; 27(2): 266-7, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21068001

RESUMEN

SUMMARY: PriSM is a set of algorithms designed to select and match degenerate primer pairs for the amplification of viral genomes. The design of panels of hundreds of primer pairs takes just hours using this program, compared with days using a manual approach. PriSM allows for rapid in silico optimization of primers for downstream applications such as sequencing. As a validation, PriSM was used to create an amplification primer panel for human immunodeficiency virus (HIV) Clade B. AVAILABILITY: The program is freely available for use at: www.broadinstitute.org/perl/seq/specialprojects/primerDesign.cgi.


Asunto(s)
Algoritmos , Cartilla de ADN/química , Genoma Viral , Programas Informáticos , VIH/genética , Humanos , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ARN
8.
PLoS Negl Trop Dis ; 4(7): e757, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20651932

RESUMEN

A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/epidemiología , Dengue/virología , Variación Genética , Adolescente , Asia Sudoriental/epidemiología , Niño , Preescolar , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Femenino , Genoma Viral , Genotipo , Humanos , Masculino , Epidemiología Molecular , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas del Envoltorio Viral/genética , Viremia
9.
Science ; 328(5981): 994-9, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20489017

RESUMEN

The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Asunto(s)
Genoma Bacteriano , Metagenoma/genética , Análisis de Secuencia de ADN , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biodiversidad , Biología Computacional , Bases de Datos Genéticas , Tracto Gastrointestinal/microbiología , Genes Bacterianos , Variación Genética , Genoma Arqueal , Humanos , Metagenómica/métodos , Metagenómica/normas , Boca/microbiología , Péptidos/química , Péptidos/genética , Filogenia , Sistema Respiratorio/microbiología , Análisis de Secuencia de ADN/normas , Piel/microbiología , Sistema Urogenital/microbiología
10.
Proc Natl Acad Sci U S A ; 105(8): 3100-5, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287045

RESUMEN

One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.


Asunto(s)
Fibrosis Quística/complicaciones , Ambiente , Evolución Molecular , Genoma Bacteriano , Filogenia , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Secuencia de Bases , Genómica , Humanos , Datos de Secuencia Molecular , Infecciones por Pseudomonas/etiología , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
Genome Res ; 16(10): 1241-51, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16902087

RESUMEN

Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Genes Duplicados/genética , Ploidias , Zea mays/genética , Secuencia de Bases , Mapeo Cromosómico , Modelos Genéticos , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía/genética
12.
Nature ; 440(7083): 497-500, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16554811

RESUMEN

Chromosome 11, although average in size, is one of the most gene- and disease-rich chromosomes in the human genome. Initial gene annotation indicates an average gene density of 11.6 genes per megabase, including 1,524 protein-coding genes, some of which were identified using novel methods, and 765 pseudogenes. One-quarter of the protein-coding genes shows overlap with other genes. Of the 856 olfactory receptor genes in the human genome, more than 40% are located in 28 single- and multi-gene clusters along this chromosome. Out of the 171 disorders currently attributed to the chromosome, 86 remain for which the underlying molecular basis is not yet known, including several mendelian traits, cancer and susceptibility loci. The high-quality data presented here--nearly 134.5 million base pairs representing 99.8% coverage of the euchromatic sequence--provide scientists with a solid foundation for understanding the genetic basis of these disorders and other biological phenomena.


Asunto(s)
Cromosomas Humanos Par 11 , Análisis de Secuencia de ADN , ADN , Expresión Génica , Genes , Humanos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Receptores Odorantes/genética
13.
PLoS Biol ; 2(12): e422, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15562318

RESUMEN

Little is known about the patterns of intron gain and loss or the relative contributions of these two processes to gene evolution. To investigate the dynamics of intron evolution, we analyzed orthologous genes from four filamentous fungal genomes and determined the pattern of intron conservation. We developed a probabilistic model to estimate the most likely rates of intron gain and loss giving rise to these observed conservation patterns. Our data reveal the surprising importance of intron gain. Between about 150 and 250 gains and between 150 and 350 losses were inferred in each lineage. We discuss one gene in particular (encoding 1-phosphoribosyl-5-pyrophosphate synthetase) that displays an unusually high rate of intron gain in multiple lineages. It has been recognized that introns are biased towards the 5' ends of genes in intron-poor genomes but are evenly distributed in intron-rich genomes. Current models attribute this bias to 3' intron loss through a poly-adenosine-primed reverse transcription mechanism. Contrary to standard models, we find no increased frequency of intron loss toward the 3' ends of genes. Thus, recent intron dynamics do not support a model whereby 5' intron positional bias is generated solely by 3'-biased intron loss.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Intrones , Adenosina/genética , Secuencia de Aminoácidos , Animales , Aspergillus nidulans/genética , Secuencia de Bases , Caenorhabditis elegans , Exones , Fusarium/genética , Genoma , Genoma Fúngico , Magnaporthe/genética , Modelos Estadísticos , Datos de Secuencia Molecular , Neurospora crassa/metabolismo , Polímeros , Probabilidad , Ribosa-Fosfato Pirofosfoquinasa/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transcripción Genética
14.
Genomics ; 81(3): 329-35, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12659816

RESUMEN

We have recently reported a new pathogen discovery approach, "computational subtraction". With this approach, non-human transcripts are detected by sequencing cDNA libraries from infected tissue and eliminating those transcripts that match the human genome. We show now that this method is experimentally feasible. We generated a cDNA library from a tissue sample of post-transplant lymphoproliferative disorder (PTLD). 27,840 independent cDNA sequences were filtered by computational subtraction against the known human sequence to identify 32 nonmatching transcripts. Of these, 22 (0.1%) were found to be amplifiable from both infected and noninfected samples and were inferred to be human DNA not yet contained in the available human genome sequence. The remaining 10 sequences could be amplified only from Epstein-Barr virus (EBV)-infected tissues. All 10 corresponded to the known EBV sequence. This proof-of-principle experiment demonstrates that computational subtraction can detect pathogenic microbes in primary human-diseased tissue.


Asunto(s)
Herpesvirus Humano 4/aislamiento & purificación , Técnica de Sustracción , ADN Complementario , Herpesvirus Humano 4/genética , Humanos , Reacción en Cadena de la Polimerasa
15.
Nature ; 420(6915): 520-62, 2002 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-12466850

RESUMEN

The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.


Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Genoma , Ratones/genética , Mapeo Físico de Cromosoma , Animales , Composición de Base , Secuencia Conservada/genética , Islas de CpG/genética , Regulación de la Expresión Génica , Genes/genética , Variación Genética/genética , Genoma Humano , Genómica , Humanos , Ratones/clasificación , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Familia de Multigenes/genética , Mutagénesis , Neoplasias/genética , Proteoma/genética , Seudogenes/genética , Sitios de Carácter Cuantitativo/genética , ARN no Traducido/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Selección Genética , Análisis de Secuencia de ADN , Cromosomas Sexuales/genética , Especificidad de la Especie , Sintenía
16.
Genome Res ; 12(7): 1029-39, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12097339

RESUMEN

The BB (BioBreeding) rat is one of the best models of spontaneous autoimmune diabetes and is used to study non-MHC loci contributing to Type 1 diabetes. Type 1 diabetes in the diabetes-prone BB (BBDP) rat is polygenic, dependent upon mutations at several loci. Iddm1, on chromosome 4, is responsible for a lymphopenia (lyp) phenotype and is essential to diabetes. In this study, we report the positional cloning of the Iddm1/lyp locus. We show that lymphopenia is due to a frameshift deletion in a novel member (Ian5) of the Immune-Associated Nucleotide (IAN)-related gene family, resulting in truncation of a significant portion of the protein. This mutation was absent in 37 other inbred rat strains that are nonlymphopenic and nondiabetic. The IAN gene family, lying within a tight cluster on rat chromosome 4, mouse chromosome 6, and human chromosome 7, is poorly characterized. Some members of the family have been shown to be expressed in mature T cells and switched on during thymic T-cell development, suggesting that Ian5 may be a key factor in T-cell development. The lymphopenia mutation may thus be useful not only to elucidate Type 1 diabetes, but also in the function of the Ian gene family as a whole.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Linfopenia/genética , Eliminación de Secuencia/genética , Secuencia de Aminoácidos , Animales , Animales Congénicos/genética , Proteínas Reguladoras de la Apoptosis , Diabetes Mellitus Tipo 1/complicaciones , Proteínas de Unión al GTP/biosíntesis , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/metabolismo , Humanos , Linfopenia/etiología , Ratones , Datos de Secuencia Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 22 , Proteínas Tirosina Fosfatasas/genética , Ratas , Ratas Endogámicas BB , Ratas Endogámicas F344 , Ratas Endogámicas LEC , Ratas Endogámicas OLETF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA