Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Transl Med ; 16(737): eadf4601, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446899

RESUMEN

Patients with cancer undergoing chemotherapy frequently experience a neurological condition known as chemotherapy-related cognitive impairment, or "chemobrain," which can persist for the remainder of their lives. Despite the growing prevalence of chemobrain, both its underlying mechanisms and treatment strategies remain poorly understood. Recent findings suggest that chemobrain shares several characteristics with neurodegenerative diseases, including chronic neuroinflammation, DNA damage, and synaptic loss. We investigated whether a noninvasive sensory stimulation treatment we term gamma entrainment using sensory stimuli (GENUS), which has been shown to alleviate aberrant immune and synaptic pathologies in mouse models of neurodegeneration, could also mitigate chemobrain phenotypes in mice administered a chemotherapeutic drug. When administered concurrently with the chemotherapeutic agent cisplatin, GENUS alleviated cisplatin-induced brain pathology, promoted oligodendrocyte survival, and improved cognitive function in a mouse model of chemobrain. These effects persisted for up to 105 days after GENUS treatment, suggesting the potential for long-lasting benefits. However, when administered to mice 90 days after chemotherapy, GENUS treatment only provided limited benefits, indicating that it was most effective when used to prevent the progression of chemobrain pathology. Furthermore, we demonstrated that the effects of GENUS in mice were not limited to cisplatin-induced chemobrain but also extended to methotrexate-induced chemobrain. Collectively, these findings suggest that GENUS may represent a versatile approach for treating chemobrain induced by different chemotherapy agents.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Humanos , Animales , Ratones , Cisplatino/efectos adversos , Cognición , Daño del ADN , Modelos Animales de Enfermedad
2.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
3.
BMC Biol ; 19(1): 65, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823872

RESUMEN

BACKGROUND: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS: We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION: Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.


Asunto(s)
Conducta Exploratoria , Ratones/fisiología , Actividad Motora , Carrera , Sueño/fisiología , Vigilia , Animales , Masculino , Ratones Endogámicos C57BL , Sueño de Onda Lenta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA