Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phys Med ; 90: 30-39, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34530213

RESUMEN

PURPOSE: To assess the interplay effect amplitude between different planned MU distributions and respiratory patterns in the CyberKnife system when treating moving targets with static tracking technique. METHODS: Small- and Large-Respiratory Motions (SRM and LRM) differing in amplitude and frequency were simulated in a semi-anthropomorphic dynamic thorax phantom. The interplay effect was evaluated for both respiration motions in terms of GTV coverage and conformity for three plans designed with an increasing range of MU per beam (small, medium and large). Each plan was delivered three times changing the initial beam-on phase to assess the inter-fraction variation. Dose distributions were measured using radiochromic films placed in the GTV axial and sagittal planes. RESULTS: Generally, SRM plans gave higher GTV coverage and were less dependent on beam-on phases than LRM plans. For SRM (LRM) plans, the GTV coverage ranged from 95.2% to 99.7% (85.9% to 99.8%). Maximum GTV coverage was found for large MU plans in SRM and for small MU plans in LRM. Minimum GTV coverage was found for medium MU plans for both SRM and LRM. For SRM plans, dose conformity decreased with increasing MU range while the variation was reduced for LRM plans. Large MU plans reduced the inter-fraction variation for SRM and LRM. CONCLUSIONS: We confirmed the interplay effect between target motion and beam irradiation time for CyberKnife static tracking. Plans with large MU per beam improved the GTV coverage for small motion amplitude and the inter-fraction dose variation for large motion amplitude.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/cirugía , Movimiento (Física) , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Respiración
2.
J Med Imaging (Bellingham) ; 7(4): 045501, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32743016

RESUMEN

Purpose: Visual search using volumetric images is becoming the standard in medical imaging. However, we do not fully understand how eye movement strategies mediate diagnostic performance. A recent study on computed tomography (CT) images showed that the search strategies of radiologists could be classified based on saccade amplitudes and cross-quadrant eye movements [eye movement index (EMI)] into two categories: drillers and scanners. Approach: We investigate how the number of times a radiologist scrolls in a given direction during analysis of the images (number of courses) could add a supplementary variable to use to characterize search strategies. We used a set of 15 normal liver CT images in which we inserted 1 to 5 hypodense metastases of two different signal contrast amplitudes. Twenty radiologists were asked to search for the metastases while their eye-gaze was recorded by an eye-tracker device (EyeLink1000, SR Research Ltd., Mississauga, Ontario, Canada). Results: We found that categorizing radiologists based on the number of courses (rather than EMI) could better predict differences in decision times, percentage of image covered, and search error rates. Radiologists with a larger number of courses covered more volume in more time, found more metastases, and made fewer search errors than those with a lower number of courses. Our results suggest that the traditional definition of drillers and scanners could be expanded to include scrolling behavior. Drillers could be defined as scrolling back and forth through the image stack, each time exploring a different area on each image (low EMI and high number of courses). Scanners could be defined as scrolling progressively through the stack of images and focusing on different areas within each image slice (high EMI and low number of courses). Conclusions: Together, our results further enhance the understanding of how radiologists investigate three-dimensional volumes and may improve how to teach effective reading strategies to radiology residents.

3.
Med Phys ; 47(9): 3845-3851, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32594530

RESUMEN

PURPOSE: To validate a delivery quality assurance (DQA) protocol for tomotherapy based on the measurement of the leaf open times (LOTs). In addition, to show the correlation between the mean relative LOT discrepancy and the dose deviation in the planning target volume (PTV). MATERIALS AND METHODS: We used a LOT measurement algorithm presented in a previous work on our two tomotherapy treatment units (TOMO1 and TOMO2). We generated TomoPhant plans with intentional random LOT discrepancies following Gaussian distributions of -6%, -4%, -2%, 2%, 4%, and 6%. We irradiated them on the Cheese Phantom with two ion chambers and collected the raw data on both our treatment units. Using the raw data, we measured the actual LOTs and verified that the induced discrepancies were highlightable. Then, we calculated the actual dose using Accuray's standalone dose calculator and verified that the calculated dose agreed with the ion chamber measurement. We randomly chose 60 clinical treatment plans, delivered them in air, and collected the raw detector data. We measured the actual LOTs from the raw data and calculated the corresponding dose distributions using Accuray's standalone dose calculator. We assessed the Pearson coefficient correlation of the deviation between expected and actual dose in the PTV (a) with the mean relative LOT discrepancy and (b) with the γ-index pass rate for different tolerances. RESULTS: The mean relative discrepancy between actual (measured by the algorithm) and expected LOTs on the modified TomoPhant plans was 1.10 ± 0.05% on TOMO1 and 0.02 ± 0.03% on TOMO2, respectively. The agreement between measured and calculated dose was 0.2 ± 0.3% on TOMO1 and 0.1 ± 0.3% on TOMO2, respectively. On clinical plans, the means of the relative LOT discrepancies ranged from -3.0 % to 1.4%. The dose deviation in the PTVs ranged from -1.6% to 2.4%. The Pearson coefficient correlation between the mean relative LOT discrepancy and the dose deviation in the PTV was 0.76 (P ≈ 10-15 ) on TOMO1 and 0.65 (P ≈ 10-10 ) on TOMO2, respectively. There was no correlation between the γ-index pass rate and the dose deviation in the PTV. CONCLUSION: The method made it possible to measure and to correctly highlight the LOT discrepancies on the TomoPhant plans. The dose subsequently calculated was accurate. On clinical plans, the mean LOT discrepancy correlated with the dose deviation in the PTV. This makes the mean LOT discrepancy a handy indicator of the plan quality.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Fantasmas de Imagen , Hojas de la Planta , Dosificación Radioterapéutica
4.
Med Phys ; 47(5): 2309-2316, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32078167

RESUMEN

PURPOSE: The purpose of this study was to calculate dose distributions from CyberKnife image-guided radiation therapy (IGRT) for brain, H&N, lung, and pelvis treatment regions and use them to extract the corresponding effective dose and estimate-related risk. METHODS: We developed a CyberKnife IGRT kV beam model in a standard treatment planning system and validated it against measurements in heterogeneous phantoms. Five brain, five head and neck, five thorax, and 10 (five male and five female) pelvis patient computed tomographies (CTs) were contoured. The dose distribution resulting from different CyberKnife IGRT protocols was calculated. From them, the effective dose was calculated according to ICRP publication Nr 103, using the average dose to contoured organs. The corresponding risk factors were calculated. Entrance surface dose (ESD) was also calculated and compared with existing data. RESULTS: The maximum effective dose produced by CyberKnife IGRT protocols was 0.8 mSv (brain), 1.9 mSv (H&N), 20.2 (pelvis), and 42.4 mSv (thorax) per fraction for a risk estimate of 0.004% (brain), 0.01% (H&N), 0.1% (pelvis), and 0.2% (thorax). Calculated ESD were compatible with existing data. CONCLUSIONS: Dose calculation models for CyberKnife IGRT kV beams were implemented in a clinical treatment planning system and validated in water and heterogeneous phantoms. We determined the effective dose and the related risk estimate resulting from CyberKnife IGRT protocols for brain, head and neck, thorax, and pelvis cases. The effective doses calculated for CyberKnife IGRT protocols were similar to those obtained for cone beam CT protocols on conventional C-arm linear accelerators, except for extreme irradiation conditions for thorax cases (140 kV X-ray tube tension).


Asunto(s)
Dosis de Radiación , Radioterapia Guiada por Imagen/métodos , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/efectos adversos
5.
J Med Imaging (Bellingham) ; 7(2): 022411, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32064303

RESUMEN

Purpose: With three-dimensional (3-D) images displayed as stacks of 2-D images, radiologists rely more heavily on vision away from their fixation point to visually process information, guide eye movements, and detect abnormalities. Thus the ability to detect targets away from the fixation point, commonly characterized as the useful field of view (UFOV), becomes critical for these 3-D imaging modalities. We investigate how the UFOV, defined as the eccentricity, in which detection performance degrades to a given probability, varies across imaging modalities and targets. Approach: We measure the detectability of different targets at various distances from gaze locations for single slices of liver computed tomography (CT), 2-D digital mammograms (DM), and single slices of digital breast tomosynthesis (DBT) cases. Observers with varying expertise were instructed to maintain their gaze at a point while a short display of the image was flashed and an eye tracker verified observer's steady fixation. Display times were 200 and 1000 ms for CT images and 500 ms for DM and DBT images. Results: We find variations in the UFOV from 9 to 12 deg for liver CT to as small as 2.5 to 5 deg for calcification clusters in breast images (DM and DBT). We compare our results to those reported in the literature for lung nodules and discuss the differences across methods used to measure the UFOV, their dependence on case selection/task difficulty, viewing conditions, and observer expertise. We propose a complementary measure defined in terms of performance degradation relative to the peak foveal performance (relative-UFOV) to circumvent UFOV's variations with case selection/task difficulty. Conclusion: Our results highlight the variations in the UFOV across imaging modalities, target types, observer expertise, and measurement methods and suggest an additional relative-UFOV measure to more thoroughly characterize the detection performance away from point of fixation.

6.
Phys Med ; 64: 230-237, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31515024

RESUMEN

PURPOSE: A novel optimization algorithm (VOLO™) for robotic radiosurgery in the Precision™ treatment planning system was evaluated for different SRS/SBRT treatments and compared with the previous Sequential Optimization (SO) algorithm. MATERIALS AND METHODS: Fifty cases of brain, spine, prostate and lung tumors previously optimized with SO, were re-planned with VOLO™ algorithm keeping the same prescription, collimator type and size, optimization shells, and blocking structures. The dosimetric comparison involved target coverage, conformity (CI), gradient (GI) and homogeneity indexes, specific indicators of dose to OARs and number of nodes, beams, MU and delivery time. For brain only, plans were IRIS- and MLC-based (10 each). The remaining 30 plans were all IRIS-based. RESULTS: VOLO™ optimization was significantly superior for target coverage for prostate and spine, CI for brain, and for brain and urethra dose sparing. SO gave significantly better results for GI for prostate. VOLO™ showed a significantly steeper dose fall-off for brain MLC-based, while for prostate and spine SO was superior. For IRIS-based plans, VOLO™ significantly reduced the nodes (36%), beams (14%), and MU (31%). This led to an average reduction of delivery time of 20% (from 8% for brain to 30% for prostate). For MLC-based plans, VOLO™ significantly increased the nodes and beams (42%) keeping the same number of MU. The averaged delivery time increased by 18%. CONCLUSIONS: With respect to SO, VOLO™ optimization algorithm provided better results in terms of delivery time for IRIS-based and of quality of dose distribution for MLC-based plans, respectively.


Asunto(s)
Algoritmos , Radiocirugia , Procedimientos Quirúrgicos Robotizados , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radiometría , Planificación de la Radioterapia Asistida por Computador
7.
Med Phys ; 46(5): 1963-1971, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30810233

RESUMEN

PURPOSE: We developed an algorithm to measure the leaf open times (LOT) from the on-board detector (OBD) pulse-by-pulse data in tomotherapy. We assessed the feasibility of measuring the LOTs in dynamic jaw mode and validated the algorithm on machine QA and clinical data. Knowledge of the actual LOTs is a basis toward calculating the delivered dose and performing efficient phantom-less delivery quality assurance (DQA) controls of the multileaf collimator (MLC). In tomotherapy, the quality of the delivered dose depends on the correct performance of the MLC, hence on the accuracy of the LOTs. MATERIALS AND METHODS: In the detector signal, the period of time during which a leaf is open corresponds to a high intensity region. The algorithm described here locally normalizes the detector signal and measures the FWHM of the high intensity regions. The Daily QA module of the TomoTherapy Quality Assurance (TQA) tool measures LOT errors. The Daily QA detector data were collected during 9 days on two tomotherapy units. The errors yielded by the method were compared to these reported by the Daily QA module. In addition, clinical data were acquired on the two units (25 plans in total), in air without attenuation material in the beam path and in vivo during a treatment fraction. The study included plans with fields of all existing sizes (1.05, 2.51, 5.05 cm). The collimator jaws were in dynamic mode (TomoEDGETM ). The feasibility of measuring the LOTs was assessed with respect to the jaw aperture. RESULTS: The mean discrepancy between LOTs measured by the algorithm and those measured by TQA was of 0 ms, with a standard deviation of 0.3 ms. The LOT measured by the method had thus an uncertainty of 1 ms with a confidence level of 99%. In 5.05 cm dynamic jaw procedures, the detector is in the beam umbra at the beginning and at the end of the delivery. In such procedures, the algorithm could not measure the LOTs at jaw apertures between 7 and maximum 12.4 mm. Otherwise, no measurement error due to the jaw movement was observed. No LOT measurement difference between air and in vivo data was observed either. CONCLUSION: The method we propose is reliable. It can equivalently measure the LOTs from data acquired in air or in vivo. It handles fully the static procedures and the 2.51 cm dynamic procedures. It handles partially the 5.05 cm dynamic procedures. The limitation was evaluated with respect to the jaw aperture.


Asunto(s)
Algoritmos , Neoplasias/radioterapia , Garantía de la Calidad de Atención de Salud/normas , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Humanos , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
8.
Med Phys ; 44(2): 355-363, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28133748

RESUMEN

PURPOSE: The Leksell Gamma Knife (LGK) Icon has been recently introduced to provide Gamma Knife technology with frameless stereotactic treatments which use an additional cone-beam CT (CBCT) imaging system and a motion tracking system (IFMM, Intra-Fraction Motion Management). The system was commissioned for the treatment unit itself as well as the imaging system. METHODS: The LGK Icon was calibrated using an A1SL ionization chamber. EBT3 radiochromic films were employed to independently check the machine calibration, to measure the relative output factors (ROFs) and to collect dose distributions. Coincidence between CBCT isocenter and radiological focus was evaluated by means of EBT3 films. CBCT image quality was investigated in terms of spatial resolution, contrast-to-noise ratio (CNR), and uniformity for the two presets available (low dose and high dose). Computed Tomography Dose Index (CTDI) was also measured for both presets. RESULTS: The absolute dose rate of the LGK Icon was 3.86 ± 0.09 Gy/min. This result was confirmed by EBT3 readings. ROF were found to be 0.887 ± 0.035 and 0.797 ± 0.032 for the 8 mm and 4 mm collimators, respectively, which are within 2% of the Monte Carlo-derived ROF values. Excellent agreement was found between calculated and measured dose distribution with the gamma pass rate >95% of points for the nine dose distributions analyzed with 3%/1 mm criteria. CBCT isocenter was found to be within 0.2 mm with respect to radiological focus. Image quality parameters were found to be well within the manufacturer's specifications with the high-dose preset being superior in terms of CNR and uniformity. CTDI values were 2.41 mGy and 6.32 mGy, i.e. -3.6% and 0.3% different from the nominal values for the low-dose and high-dose presets, respectively. CONCLUSIONS: The LGK Icon was successfully commissioned for clinical use. The use of the EBT3 to characterize the treatment unit was demonstrated to be feasible. The CBCT imaging system operates well within the manufacturer's specifications and provides good geometrical accuracy.


Asunto(s)
Radiocirugia/instrumentación , Calibración , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Dosimetría por Película , Cabeza/diagnóstico por imagen , Cabeza/cirugía , Humanos , Modelos Anatómicos , Método de Montecarlo , Fantasmas de Imagen , Radiocirugia/métodos , Dosificación Radioterapéutica , Agua
9.
Med Phys ; 44(2): 725-735, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28019660

RESUMEN

PURPOSE: The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Dm ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Dp ) of up to 8 × 106 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. MATERIAL AND METHODS: Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Dm dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Dm between 0.55 and 4.40 Gy/min, while Dp dependence was probed at the prototype machine for Dp ranging from 7 × 103 to 8 × 106 Gy/s. Dp dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. RESULTS: We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Dm dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Dp range attainable at the prototype linac confirming the absence of any dose-rate dependence within the investigated range (7 × 103 to 8 × 106 Gy/s). This aspect was further corroborated by the linear relationship between the dose-per-pulse (Dp ) measured by films and the charge per pulse (Cp ) measured at the prototype linac exit. CONCLUSION: Our study shows that the use of EBT3 Gafchromic films can be extended to reference dosimetry in pulsed electron beams with a very high dose rate. The measurement results are associated with an overall uncertainty below 4% (k = 2) and are dose-rate and energy independent.


Asunto(s)
Electrones , Dosimetría por Película/métodos , Dosis de Radiación , Estudios de Factibilidad , Dosimetría por Película/instrumentación , Humanos , Aceleradores de Partículas
10.
Radiat Prot Dosimetry ; 169(1-4): 78-83, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26940439

RESUMEN

Patient dose optimisation in computed tomography (CT) should be done using clinically relevant tasks when dealing with image quality assessments. In the present work, low-contrast detectability for an average patient morphology was assessed on 56 CT units, using a model observer applied on images acquired with two specific protocols of an anthropomorphic phantom containing spheres. Images were assessed using the channelised Hotelling observer (CHO) with dense difference of Gaussian channels. The results were computed by performing receiver operating characteristics analysis (ROC) and using the area under the ROC curve (AUC) as a figure of merit. The results showed a small disparity at a volume computed tomography dose index (CTDIvol) of 15 mGy depending on the CT units for the chosen image quality criterion. For 8-mm targets, AUCs were 0.999 ± 0.018 at 20 Hounsfield units (HU) and 0.927 ± 0.054 at 10 HU. For 5-mm targets, AUCs were 0.947 ± 0.059 and 0.702 ± 0.068 at 20 and 10 HU, respectively. The robustness of the CHO opens the way for CT protocol benchmarking and optimisation processes.


Asunto(s)
Benchmarking/normas , Exposición a la Radiación/análisis , Monitoreo de Radiación/normas , Protección Radiológica/normas , Intensificación de Imagen Radiográfica/normas , Tomografía Computarizada por Rayos X/normas , Guías de Práctica Clínica como Asunto , Exposición a la Radiación/prevención & control , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Suiza
11.
Radiat Prot Dosimetry ; 169(1-4): 73-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26922787

RESUMEN

Evaluating image quality by using receiver operating characteristic studies is time consuming and difficult to implement. This work assesses a new iterative algorithm using a channelised Hotelling observer (CHO). For this purpose, an anthropomorphic abdomen phantom with spheres of various sizes and contrasts was scanned at 3 volume computed tomography dose index (CTDIvol) levels on a GE Revolution CT. Images were reconstructed using the iterative reconstruction method adaptive statistical iterative reconstruction-V (ASIR-V) at ASIR-V 0, 50 and 70 % and assessed by applying a CHO with dense difference of Gaussian and internal noise. Both CHO and human observers (HO) were compared based on a four-alternative forced-choice experiment, using the percentage correct as a figure of merit. The results showed accordance between CHO and HO. Moreover, an improvement in the low-contrast detection was observed when switching from ASIR-V 0 to 50 %. The results underpin the finding that ASIR-V allows dose reduction.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Exposición a la Radiación/prevención & control , Intensificación de Imagen Radiográfica/métodos , Radiografía Abdominal/métodos , Tomografía Computarizada por Rayos X/métodos , Humanos , Aumento de la Imagen/métodos , Variaciones Dependientes del Observador , Exposición a la Radiación/análisis , Protección Radiológica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Pediatr Radiol ; 43(5): 558-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23224105

RESUMEN

BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.


Asunto(s)
Algoritmos , Fibrosis Quística/diagnóstico por imagen , Modelos Biológicos , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Niño , Simulación por Computador , Femenino , Humanos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Health Phys ; 103(3): 317-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22850238

RESUMEN

The aim of this study was to investigate the radiation exposure of the Swiss population to interventional procedures. A nationwide survey was conducted in Switzerland. The annual effective dose per capita due to interventional procedures was found to be 0.14 mSv, corresponding to 12% of the total dose. Coronary angiography and percutaneous coronary interventions were found to be the most frequent and the most irradiating interventional procedures, accounting for 52% of the total examination frequency and 64% of the dose delivered to the population. Switzerland stands at the same level as other countries in terms of effective dose per capita due to interventional radiology.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Radiografía Intervencional/efectos adversos , Recolección de Datos , Humanos , Internacionalidad , Especificidad de Órganos , Dosis de Radiación , Suiza
14.
Z Med Phys ; 22(2): 123-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22209700

RESUMEN

3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.


Asunto(s)
Radiometría/instrumentación , Radioterapia Conformacional/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
J Nucl Med ; 51(12): 1878-84, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21098795

RESUMEN

UNLABELLED: This study aimed at identifying clinical factors for predicting hematologic toxicity after radioimmunotherapy with (90)Y-ibritumomab tiuxetan or (131)I-tositumomab in clinical practice. METHODS: Hematologic data were available from 14 non-Hodgkin lymphoma patients treated with (90)Y-ibritumomab tiuxetan and 18 who received (131)I-tositumomab. The percentage baseline at nadir and 4 wk post nadir and the time to nadir were selected as the toxicity indicators for both platelets and neutrophils. Multiple linear regression analysis was performed to identify significant predictors (P < 0.05) of each indicator. RESULTS: For both platelets and neutrophils, pooled and separate analyses of (90)Y-ibritumomab tiuxetan and (131)I-tositumomab data yielded the time elapsed since the last chemotherapy as the only significant predictor of the percentage baseline at nadir. The extent of bone marrow involvement was not a significant factor in this study, possibly because of the short time elapsed since the last chemotherapy of the 7 patients with bone marrow involvement. Because both treatments were designed to deliver a comparable bone marrow dose, this factor also was not significant. None of the 14 factors considered was predictive of the time to nadir. The R(2) value for the model predicting percentage baseline at nadir was 0.60 for platelets and 0.40 for neutrophils. This model predicted the platelet and neutrophil toxicity grade to within ±1 for 28 and 30 of the 32 patients, respectively. For the 7 patients predicted with grade I thrombocytopenia, 6 of whom had actual grade I-II, dosing might be increased to improve treatment efficacy. CONCLUSION: The elapsed time since the last chemotherapy can be used to predict hematologic toxicity and customize the current dosing method in radioimmunotherapy.


Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Enfermedades Hematológicas/etiología , Radioinmunoterapia/efectos adversos , Radiofármacos/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Médula Ósea/metabolismo , Resistencia a Antineoplásicos , Femenino , Enfermedades Hematológicas/epidemiología , Humanos , Recuento de Leucocitos , Modelos Lineales , Linfoma no Hodgkin/terapia , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Neutrófilos , Recuento de Plaquetas , Valor Predictivo de las Pruebas , Radiometría , Radiofármacos/administración & dosificación , Radiofármacos/uso terapéutico , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Radioisótopos de Itrio
16.
Med Phys ; 36(9): 3891-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19810461

RESUMEN

PURPOSE: A helical tomotherapy accelerator presents a dosimetric challenge because, to this day, there is no internationally accepted protocol for the determination of the absolute dose. Because of this reality, we investigated the different alternatives for characterizing and measuring the absolute dose of such an accelerator. We tested several dosimetric techniques with various metrological traceabilities as well as using a number of phantoms in static and helical modes. METHODS: Firstly, the relationship between the reading of ionization chambers and the absorbed dose is dependent on the beam quality value of the photon beam. For high energy photons, the beam quality is specified by the tissue phantom ratio (TPR20,10) and it is therefore necessary to know the TPR20,10 to calculate the dose delivered by a given accelerator. This parameter is obtained through the ratio of the absorbed dose at 20 and 10 cm depths in water and was measured in the particular conditions of the tomotherapy accelerator. Afterward, measurements were performed using the ionization chamber (model A1SL) delivered as a reference instrument by the vendor. This chamber is traceable in absorbed dose to water in a Co-60 beam to a water calorimeter of the American metrology institute (NIST). Similarly, in Switzerland, each radiotherapy department is directly traceable to the Swiss metrology institute (METAS) in absorbed dose to water based on a water calorimeter. For our research, this traceability was obtained by using an ionization chamber traceable to METAS (model NE 2611A), which is the secondary standard of our institute. Furthermore, in order to have another fully independent measurement method, we determined the dose using alanine dosimeters provided by and traceable to the British metrology institute (NPL); they are calibrated in absorbed dose to water using a graphite calorimeter. And finally, we wanted to take into account the type of chamber routinely used in clinical practice and therefore measured the dose using a Farmer-type instrument (model NE 2571) as well. RESULTS: We found the tomotherapy TPR20,10 value to be around 0.629, which is close to a 4 MV conventional linear accelerator value. During static irradiation, the secondary standard and the alanine dosimeters were compatible within 0.5%. The A1SL relative deviation to the secondary standard was 1.2% and the NE2571 relative deviation to the secondary standard was -1.7%. The measurement in dynamic helical mode found the different dosimeters compatible within 1.4% and the alanine dosimeters and the secondary standard were even found under 0.2%. CONCLUSIONS: We found that the different methods are all within uncertainties as well as globally coherent, and the specific limitations of the various dosimeters are discussed in order to help the medical physicist design an independent reference system. We demonstrated that, taking into account the particular reference conditions, one can use an ionization chamber calibrated for conventional linear accelerators to assert the absolute dose delivered by a tomotherapy accelerator.


Asunto(s)
Aceleradores de Partículas , Monitoreo de Radiación/métodos , Dosificación Radioterapéutica , Radioterapia , Calibración , Calorimetría , Modelos Teóricos , Fantasmas de Imagen , Fotones/uso terapéutico , Guías de Práctica Clínica como Asunto , Dosis de Radiación , Radioterapia/instrumentación , Radioterapia/métodos , Incertidumbre , Agua/química
17.
Health Phys ; 96(5): 575-86, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19359851

RESUMEN

When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.


Asunto(s)
Descontaminación , Método de Montecarlo , Plantas de Energía Nuclear , Radioisótopos/análisis , Radiometría/métodos , Simulación por Computador , Humanos , Liberación de Radiactividad Peligrosa/prevención & control , Radioisótopos/farmacocinética
18.
Opt Express ; 16(11): 7595-607, 2008 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-18545466

RESUMEN

Synthetic yet realistic images are valuable for many applications in visual sciences and medical imaging. Typically, investigators develop algorithms and adjust their parameters to generate images that are visually similar to real images. In this study, we used a genetic algorithm and an objective, statistical similarity measure to optimize a particular texture generation algorithm, the clustered lumpy backgrounds (CLB) technique, and synthesize images mimicking real mammograms textures. We combined this approach with psychophysical experiments involving the judgment of radiologists, who were asked to qualify the visual realism of the images. Both objective and psychophysical approaches show that the optimized versions are significantly more realistic than the previous CLB model. Anatomical structures are well reproduced, and arbitrary large databases of mammographic texture with visual and statistical realism can be generated. Potential applications include detection experiments, where large amounts of statistically traceable yet realistic images are needed.


Asunto(s)
Algoritmos , Inteligencia Artificial , Neoplasias de la Mama/diagnóstico por imagen , Imagenología Tridimensional/métodos , Mamografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Análisis por Conglomerados , Simulación por Computador , Femenino , Humanos , Modelos Genéticos , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
J Opt Soc Am A Opt Image Sci Vis ; 24(12): B1-12, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18059902

RESUMEN

We estimated human observer linear templates underlying the detection of a realistic, spherical mass signal with mammographic backgrounds. Five trained naïve observers participated in two-alternative forced-choice (2-AFC) detection experiments with the signal superimposed on synthetic, clustered lumpy backgrounds (CLBs) in one condition and on nonstationary real mammographic backgrounds in another. Human observer linear templates were estimated using a genetic algorithm. A variety of common model observer templates were computed, and their shapes and associated performances were compared with those of the human observer. The estimated linear templates are not significantly different for stationary CLBs and real mammographic backgrounds. The estimated performance of the linear template compared with that of the human observers is within 5% in terms of percent correct (Pc) for the 2-AFC task. Channelized Hotelling models can fit human performance, but the templates differ considerably from the human linear template. Due to different local statistics, detection efficiency is significantly higher on nonstationary real backgrounds than on globally stationary synthetic CLBs. This finding emphasizes that nonstationary backgrounds need to be described by their local statistics.


Asunto(s)
Teoría de las Decisiones , Modelos Lineales , Mamografía , Reconocimiento Visual de Modelos , Detección de Señal Psicológica , Conducta de Elección , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Funciones de Verosimilitud , Mamografía/métodos , Modelos Neurológicos , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Análisis y Desempeño de Tareas
20.
Acad Radiol ; 14(12): 1486-99, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18035278

RESUMEN

RATIONALE AND OBJECTIVES: Our project was to investigate a complete methodology for the semiautomatic assessment of digital mammograms according to their density, an indicator known to be correlated to breast cancer risk. The BI-RADS four-grade density scale is usually employed by radiologists for reporting breast density, but it allows for a certain degree of subjective input, and an objective qualification of density has therefore often been reported hard to assess. The goal of this study was to design an objective technique for determining breast BI-RADS density. MATERIALS AND METHODS: The proposed semiautomatic method makes use of complementary pattern recognition techniques to describe manually selected regions of interest (ROIs) in the breast with 36 statistical features. Three different classifiers based on a linear discriminant analysis or Bayesian theories were designed and tested on a database consisting of 1408 ROIs from 88 patients, using a leave-one-ROI-out technique. Classifications in optimal feature subspaces with lower dimensionality and reduction to a two-class problem were studied as well. RESULTS: Comparison with a reference established by the classifications of three radiologists shows excellent performance of the classifiers, even though extremely dense breasts continue to remain more difficult to classify accurately. For the two best classifiers, the exact agreement percentages are 76% and above, and weighted kappa values are 0.78 and 0.83. Furthermore, classification in lower dimensional spaces and two-class problems give excellent results. CONCLUSION: The proposed semiautomatic classifiers method provides an objective and reproducible method for characterizing breast density, especially for the two-class case. It represents a simple and valuable tool that could be used in screening programs, training, education, or for optimizing image processing in diagnostic tasks.


Asunto(s)
Mama/patología , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Mamografía/clasificación , Algoritmos , Teorema de Bayes , Neoplasias de la Mama/diagnóstico por imagen , Bases de Datos como Asunto , Análisis Discriminante , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Bases del Conocimiento , Reconocimiento de Normas Patrones Automatizadas , Intensificación de Imagen Radiográfica , Radiología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA